ترغب بنشر مسار تعليمي؟ اضغط هنا

Stationary Spiral Structure and Collective Motion of the Stars in a Spiral Galaxy

369   0   0.0 ( 0 )
 نشر من قبل Ying-Qiu Gu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ying-Qiu Gu




اسأل ChatGPT حول البحث

Most fully developed galaxies have a vivid spiral structure, but the formation and evolution of the spiral structure are still an enigma in astrophysics. In this paper, according to the standard Newtonian gravitational theory and some observational facts, we derive an idealized model for spiral galaxy, and give a natural explanation to the spiral structure. We solve some analytic solutions to a spiral galaxy, and obtain manifest relations between density and speed. From the solution we get some interesting results: (I) The spiral pattern is a stationary or static structure of density wave, and the barred galaxy globally rotate around an axis at tiny angular speed. (II) All stars in the disc of a barred spiral galaxy move in almost circular orbits. (III) In the spiral arms, the speed of stars takes minimum and the stellar density takes maximum. (IV) The mass-energy density of the dark halo is compensatory for that of the disc, namely, it takes minimum in the spiral arms. This phenomenon might reflect the complicated stream lines of the dark halo.



قيم البحث

اقرأ أيضاً

145 - L. G. Hou 2009
The spiral structure of our Milky Way Galaxy is not yet known. HII regions and giant molecular clouds are the most prominent spiral tracers. We collected the spiral tracer data of our Milky Way from the literature, namely, HII regions and giant molec ular clouds (GMCs). With weighting factors based on the excitation parameters of HII regions or the masses of GMCs, we fitted the distribution of these tracers with models of two, three, four spiral-arms or polynomial spiral arms. The distances of tracers, if not available from stellar or direct measurements, were estimated kinetically from the standard rotation curve of Brand & Blitz (1993) with $R_0$=8.5 kpc, and $Theta_0$=220 km s$^{-1}$ or the newly fitted rotation curves with $R_0$=8.0 kpc and $Theta_0$=220 km s$^{-1}$ or $R_0$=8.4 kpc and $Theta_0$=254 km s$^{-1}$. We found that the two-arm logarithmic model cannot fit the data in many regions. The three- and the four-arm logarithmic models are able to connect most tracers. However, at least two observed tangential directions cannot be matched by the three- or four-arm model. We composed a polynomial spiral arm model, which can not only fit the tracer distribution but also match observed tangential directions. Using new rotation curves with $R_0$=8.0 kpc and $Theta_0$=220 km s$^{-1}$ and $R_0$=8.4 kpc and $Theta_0$=254 km s$^{-1}$ for the estimation of kinematic distances, we found that the distribution of HII regions and GMCs can fit the models well, although the results do not change significantly compared to the parameters with the standard $R_0$ and $Theta_0$.
115 - Yuri N.Efremov 2010
We consider the possible pattern of the overall spiral structure of the Galaxy, using data on the distribution of neutral (atomic), molecular, and ionized hydrogen, on the base of the hypothesis of the spiral structure being symmetric, i.e. the assum ption that spiral arms are translated into each other for a rotation around the galactic center by 180{deg} (a two-arm pattern) or by 90{deg} (a four-arm pattern). We demonstrate that, for the inner region, the observations are best represented with a four-arm scheme of the spiral pattern, associated with all-Galaxy spiral density waves. The basic position is that of the Carina arm, reliably determined from distances to HII regions and from HI and H2 radial velocities. This pattern is continued in the quadrants III and IV with weak outer HI arms; from their morphology, the Galaxy should be considered an asymmetric multi-arm spiral. The kneed shape of the outer arms that consist of straight segments can indicate that these arms are transient formations that appeared due to a gravitational instability in the gas disk. The distances between HI superclouds in the two arms that are the brightest in neutral hydrogen, the Carina arm and the Cygnus (Outer) arm, concentrate to two values, permitting to assume the presence of a regular magnetic field in these arms.
Recently, it has been shown that a correlation exists between the rate of shear and the spiral arm pitch angle in disk galaxies. The rate of shear depends upon the shape of the rotation curve, which is dependent upon the mass distribution in spiral g alaxies. Here, we present an imporoved correlation between shear rate and spiral arm pitch angle, by increasing the sample size. We also use an adiabatic infall code to show that the rate of shear is most strongly correlated with the central mass concentration, c_m. The spin parameter, $lambda$, and the fraction of baryons that cool, F, cause scatter in this correlation. Limiting this scatter, such that it is equal to that in the correlation between shear rate and pitch angle, and using a value of F=0.1 to 0.2, the spin parameter must be in the range 0.03<lambda<0.09 for spiral galaxies. We also derive an equation which links spiral arm pitch angle directly to c_m.
We perform simulations of isolated galaxies in order to investigate the likely origin of the spiral structure in M33. In our models, we find that gravitational instabilities in the stars and gas are able to reproduce the observed spiral pattern and v elocity field of M33, as seen in HI, and no interaction is required. We also find that the optimum models have high levels of stellar feedback which create large holes similar to those observed in M33, whilst lower levels of feedback tend to produce a large amount of small scale structure, and undisturbed long filaments of high surface density gas, hardly detected in the M33 disc. The gas component appears to have a significant role in producing the structure, so if there is little feedback, both the gas and stars organise into clear spiral arms, likely due to a lower combined $Q$ (using gas and stars), and the ready ability of cold gas to undergo spiral shocks. By contrast models with higher feedback have weaker spiral structure, especially in the stellar component, compared to grand design galaxies. We did not see a large difference in the behaviour of $Q_{stars}$ with most of these models, however, because $Q_{stars}$ stayed relatively constant unless the disc was more strongly unstable. Our models suggest that although the stars produce some underlying spiral structure, this is relatively weak, and the gas physics has a considerable role in producing the large scale structure of the ISM in flocculent spirals.
The Carnegie-Irvine Galaxy Survey provides high-quality broad-band optical images of a large sample of nearby galaxies for detailed study of their structure. To probe the physical nature and possible cosmological evolution of spiral arms, a common fe ature of many disk galaxies, it is important to quantify their main characteristics. We describe robust methods to measure the number of arms, their mean strength, length, and pitch angle. The arm strength depends only weakly on the adopted radii over which it is measured, and it is stronger in bluer bands than redder bands. The vast majority of clearly two-armed (grand-design) spiral galaxies have systematically higher relative amplitude of the $m=2$ Fourier mode in the main spiral region. We use both one-dimensional and two-dimensional Fourier decomposition to measure the pitch angle, finding reasonable agreement between these two techniques with a scatter of $sim$2$deg$. To understand the applicability and limitations of our methodology to imaging surveys of local and distant galaxies, we create mock images with properties resembling observations of local ($z$ $lesssim$ 0.1) galaxies by the Sloan Digital Sky Survey and distant galaxies (0.1 $lesssim$ $z$ $lesssim$ 1.1) observed with the $Hubble$ $Space$ $Telescope$. These simulations lay the foundation for forthcoming quantitative statistical studies of spiral structure to understand its formation mechanism, dependence on galaxy properties, and cosmological evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا