ﻻ يوجد ملخص باللغة العربية
Magneto-optical imaging was used to study the local magnetization in polycrystalline NdFeAsO$_{0.9}$F$_{0.1}$ (NFAOF). Individual crystallites up to $sim200times100times30$ $mu m^{3}$ in size could be mapped at various temperatures. The in-grain, persistent current density is about $jsim10^{5}$ A/cm$^{2}$ and the magnetic relaxation rate in a remanent state peaks at about $T_{m}sim38$ K. By comparison with with the total magnetization measured in a bar-shaped, dense, polycrystalline sample, we suggest that NdFeAsO$_{0.9}$F$_{0.1}$ is similar to a layered high-$T_{c}$, compound such as Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+x}$ and exhibits a $3Dto2D$ crossover in the vortex structure. The 2D Ginzburg parameter is about $Gi^{2D}% simeq10^{-2}$ implying electromagnetic anisotropy as large as $epsilon sim1/30$. Below $T_{m}$, the static and dynamic behaviors are consistent with collective pinning and creep.
We will probe the intrinsic behavior of spin susceptibility chi_(spin) in the LaFeAsO(1-x)F(x) superconductor (x ~ 0.1, Tc ~ 27K) using 19-F and 75-As NMR techniques. Our new results firmly establish the pseudo-gap behavior with Delta_(PG)/kB ~ 140K.
This paper is no longer active and will NOT appear in print. For new data and analysis, please see: arXiv:0903.2220
We have employed a new route to synthesize single phase F-doped LaOFeAs compound and confirmed the superconductivity above 20 K in this Fe-based system. We show that the new superconductor has a rather high upper critical field of about 54 T. A clear
We have performed 75As Nuclear Magnetic Resonance (NMR) measurements on aligned powders of the new LaO0.9F0.1FeAs superconductor. In the normal state, we find a strong temperature dependence of the spin shift and Korringa behavior of the spin lattice
Temperature and magnetic field dependent measurements of the microwave surface impedance of superconducting LaFeAsO$_{0.9}$F$_{0.1}$ (Tc $approx$ 26K) reveal a very large upper critical field ($B_{rm c2} approx 56$T) and a large value of the depinnin