ﻻ يوجد ملخص باللغة العربية
The beam transfer matrix, often called the $ABCD$ matrix, is a two-by-two matrix with unit determinant, and with three independent parameters. It is noted that this matrix cannot always be diagonalized. It can however be brought by rotation to a matrix with equal diagonal elements. This equi-diagonal matrix can then be squeeze-transformed to a rotation, to a squeeze, or to one of the two shear matrices. It is noted that these one-parameter matrices constitute the basic elements of the Wigners little group for space-time symmetries of elementary particles. Thus every $ABCD$ matrix can be written as a similarity transformation of one of the Wigner matrices, while the transformation matrix is a rotation preceded by a squeeze. This mathematical property enables us to compute scattering processes in periodic systems. Laser cavities and multilayer optics are discussed in detail. For both cases, it is shown possible to write the one-cycle transfer matrix as a similarity transformation of one of the Wigner matrices. It is thus possible to calculate the $ABCD$ matrix for an arbitrary number of cycles.
We prove that the energy of any eigenvector of a sum of several independent large Wigner matrices is equally distributed among these matrices with very high precision. This shows a particularly strong microcanonical form of the equipartition prin
We consider the single eigenvalue fluctuations of random matrices of general Wigner-type, under a one-cut assumption on the density of states. For eigenvalues in the bulk, we prove that the asymptotic fluctuations of a single eigenvalue around its cl
We consider a general Langevin dynamics for the one-dimensional N-particle Coulomb gas with confining potential $V$ at temperature $beta$. These dynamics describe for $beta=2$ the time evolution of the eigenvalues of $Ntimes N$ random Hermitian matri
We study the moments of equilibrium measures for iterated function systems (IFSs) and draw connections to operator theory. Our main object of study is the infinite matrix which encodes all the moment data of a Borel measure on R^d or C. To encode the
We show that Wigner semi-circle law holds for Hermitian matrices with dependent entries, provided the deviation of the cumulants from the normalised Gaussian case obeys a simple power law bound in the size of the matrix. To establish this result, we