ترغب بنشر مسار تعليمي؟ اضغط هنا

HELAS and MadGraph/MadEvent with spin-2 particles

30   0   0.0 ( 0 )
 نشر من قبل Qiang Li
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Fortran subroutines to calculate helicity amplitudes with massive spin-2 particles (massive gravitons), which couple to the standard model particles via the energy momentum tensor, are added to the {tt HELAS} ({tt HEL}icity {tt A}mplitude {tt S}ubroutines) library. They are coded in such a way that arbitrary scattering amplitudes with one graviton production and its decays can be generated automatically by {tt MadGraph} and {tt MadEvent}, after slight modifications. All the codes have been tested carefully by making use of the invariance of the helicity amplitudes under the gauge and general coordinate transformations.

قيم البحث

اقرأ أيضاً

We develop the helicity formalism for spin-2 particles and apply it to the case of gravity in flat extra dimensions. We then implement the large extra dimensions scenario of Arkani-Hamed, Dimopoulos and Dvali in the program AMEGIC++, allowing for an easy calculation of arbitrary processes involving the emission or exchange of gravitons. We complete the set of Feynman rules derived by Han, Lykken and Zhang, and perform several consistency checks of our implementation.
Twisted, or vortex, particles refer to freely propagating non-plane-wave states with helicoidal wave fronts. In this state, the particle possesses a non-zero orbital angular momentum with respect to its average propagation direction. Twisted photons and electrons have been experimentally demonstrated, and creation of other particles in twisted states can be anticipated. If brought in collisions, twisted states offer a new degree of freedom to particle physics, and it is timely to analyze what new insights may follow. Here, we theoretically investigate resonance production in twisted photon collisions and twisted $e^+e^-$ annihilation and show that these processes emerge as a completely novel probe of spin and parity-sensitive observables in fully inclusive cross sections with unpolarized initial particles. This is possible because the initial state with a non-zero angular momentum explicitly breaks the left-right symmetry even when averaging over helicities. In particular, we show how one can produce almost $100%$ polarized vector mesons in unpolarized twisted $e^+e^-$ annihilation and how to control its polarization state.
For the vector sector, i.e, mesons with spin-1, the electromagnetic form factors and anothers observables are calculated with the light-front approach. However, the light-front quantum field theory have some problems, for example, the rotational symm etry breaking. We solve that problem added the zero modes contribuition to the matrix elements of the electromagnetic current, besides the valence contribuition. We found that among the four independent matrix elements of the plus component in the light-front helicity basis only the $0to 0$ one carries zero mode contributions.
151 - Wojciech Florkowski 2020
The formulation of relativistic hydrodynamics for massive particles with spin 1/2 is shortly reviewed. The proposed framework is based on the Wigner function treated in a semi-classical approximation or, alternatively, on a classical treatment of spi n 1/2. Several theoretical issues regarding the choice of the energy-momentum and spin tensors used to construct the hydrodynamic framework with spin are discussed in parallel.
We analyze algebraic structure of a relativistic semi-classical Wigner function of particles with spin 1/2 and show that it consistently includes information about the spin density matrix both in two-dimensional spin and four-dimensional spinor space s. This result is subsequently used to explore various forms of equilibrium functions that differ by specific incorporation of spin chemical potential. We argue that a scalar spin chemical potential should be momentum dependent, while its tensor form may be a function of space-time coordinates only. This allows for the use of the tensor form in local thermodynamic relations. We furthermore show how scalar and tensor forms can be linked to each other.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا