ترغب بنشر مسار تعليمي؟ اضغط هنا

Reduction of CCD observations obtained with the Fabry-Perot scanning interferometer. II. Additional Procedures

135   0   0.0 ( 0 )
 نشر من قبل Alexei Moiseev
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a software package used at the Special Astrophysical Observatory of the Russian Academy of Sciences to reduce and analyze the data obtained with the Fabry-Perot scanning interferometer. We already described most of the algorithms employed in our earlier Paper I (Moiseev, 2002). In this paper we focus on extra procedures required in the case of the use of a high-resolution Fabry-Perot interferometer: removal of ghosts and measurement of the velocity dispersion of ionized gas in galactic and extragalactic objects.



قيم البحث

اقرأ أيضاً

163 - A. V. Moiseev 2015
We describe the recent modifications to the data reduction technique for observations acquired with the scanning Fabry-Perot interferometer (FPI) mounted on the 6-m telescope of the Special Astrophysical Observatory that allow the wavelength scale to be correctly computed in the case of large mutual offsets of studied objects in interferograms. Also the parameters of the scanning FPIs used in the SCORPIO-2 multimode focal reducer are considered.
172 - A.V. Moiseev 2021
The scanning Fabry-Perot interferometer (FPI) - is the oldest method of optical 3D spectroscopy. It is still in use because of the high spectral resolution it provides over a large field of view. The history of the application of this method for the study of extended ob jects (nebulae and galaxies) and the technique of data reduction and analysis are discussed. The paper focuses on the performing observations with the scanning FPI on the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS). The instrument is currently used as a part of the SCORPIO-2 multimode focal reducer. The results of studies of various galactic and extragalactic objects with the scanning FPI on the 6-m telescope - star-forming regions and young stellar objects, spiral, ring, dwarf and interacting galaxies, ionization cones of active galactic nuclei, galactic winds, etc. are briefly discussed. Further prospects for research with the scanning FPI of the SAO RAS are discussed.
169 - A. Riera , A.C. Raga , B. Reipurth 2003
We have obtained a Halpha position-velocity cube from Fabry-Perot interferometric observations of the HH 110 flow. We analyze the results in terms of anisotropic wavelet transforms, from which we derive the spatial distribution of the knots as well a s their characteristic sizes (along and across the outflow axis). We then study the spatial behaviour of the line width and the central radial velocity. The results are interpreted in terms of a simple ``mean flow+turbulent eddy jet/wake model. We find that most of the observed kinematics appear to be a direct result of the mean flow, on which are superposed low amplitude (35 km/s) turbulent velocities.
A fabrication method for electronic quantum Hall Fabry-Perot interferometers (FPI) is presented. Our method uses a combination of e-beam lithography and low-damage dry-etching to produce the FPIs and minimize the excitation of charged traps or deposi tion of impurities near the device. Optimization of the quantum point contacts (QPC) is achieved via systematically varying the etch depth and monitoring the device resistance between segmented etching sessions. The etching is stopped when a desired value of resistance is obtained. Finer control of interference trajectories is obtained by the gate metallized inside the etched area by e-beam evaporation. Our approach allows for a control of the delicate potential bending near the quantum well by tuning the confining potential of the quantum point contacts.
We propose an intrinsic 3D Fabry-Perot type interferometer, coined higher-order interferometer, that utilizes the chiral hinge states of second-order topological insulators and cannot be equivalently mapped to 2D space because of higher-order topolog y. Quantum interference patterns in the two-terminal conductance of this interferometer are controllable not only by tuning the strength but also, particularly, by rotating the direction of the magnetic field applied perpendicularly to the transport direction. Remarkably, the conductance exhibits a characteristic beating pattern with multiple frequencies with respect to field strength or direction. Our novel interferometer provides feasible and robust magneto-transport signatures to probe the particular hinge states of higher-order topological insulators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا