ترغب بنشر مسار تعليمي؟ اضغط هنا

Superscars in billiards -- A model for doorway states in quantum spectra

390   0   0.0 ( 0 )
 نشر من قبل Maksim Miski-Oglu
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a unifying way, the doorway mechanism explains spectral properties in a rich variety of open mesoscopic quantum systems, ranging from atoms to nuclei. A distinct state and a background of other states couple to each other which sensitively affects the strength function. The recently measured superscars in the barrier billiard provide an ideal model for an in--depth investigation of this mechanism. We introduce two new statistical observables, the full distribution of the maximum coupling coefficient to the doorway and directed spatial correlators. Using Random Matrix Theory and random plane waves, we obtain a consistent understanding of the experimental data.



قيم البحث

اقرأ أيضاً

246 - B. Dietz , A. Richter 2015
Experiments with superconducting microwave cavities have been performed in our laboratory for more than two decades. The purpose of the present article is to recapitulate some of the highlights achieved. We briefly review (i) results obtained with fl at, cylindrical microwave resonators, so-called microwave billiards, concerning the universal fluctuation properties of the eigenvalues of classically chaotic systems with no, a threefold and a broken symmetry; (ii) summarize our findings concerning the wave-dynamical chaos in three-dimensional microwave cavities; (iii) present a new approach for the understanding of the phenomenon of dynamical tunneling which was developed on the basis of experiments that were performed recently with unprecedented precision, and finally, (iv) give an insight into an ongoing project, where we investigate universal properties of (artificial) graphene with superconducting microwave photonic crystals that are enclosed in a microwave resonator, i.e., so-called Dirac billiards.
A numerically efficient Fredholm formulation of the billiard problem is presented. The standard solution in the framework of the boundary integral method in terms of a search for roots of a secular determinant is reviewed first. We next reformulate t he singularity condition in terms of a flow in the space of an auxiliary one-parameter family of eigenproblems and argue that the eigenvalues and eigenfunctions are analytic functions within a certain domain. Based on this analytic behavior we present a numerical algorithm to compute a range of billiard eigenvalues and associated eigenvectors by only two diagonalizations.
We consider classical dynamical properties of a particle in a constant gravitational force and making specular reflections with circular, elliptic or oval boundaries. The model and collision map are described and a detailed study of the energy regime s is made. The linear stability of fixed points is studied, yielding exact analytical expressions for parameter values at which a period-doubling bifurcation occurs. The dynamics is apparently ergodic at certain energies in all three models, in contrast to the regularity of the circular and elliptic billiard dynamics in the field-free case. This finding is confirmed using a sensitive test involving Lyapunov weighted dynamics. In the last part of the paper a time dependence is introduced in the billiard boundary, where it is shown that for the circular billiard the average velocity saturates for zero gravitational force but in the presence of gravitational it increases with a very slow growth rate, which may be explained using Arnold diffusion. For the oval billiard, where chaos is present in the static case, the particle has an unlimited velocity growth with an exponent of approximately 1/6.
170 - M. Hansen , D. Ciro , I. L. Caldas 2019
Numerical experiments of the statistical evolution of an ensemble of non-interacting particles in a time-dependent billiard with inelastic collisions, reveals the existence of three statistical regimes for the evolution of the speeds ensemble, namely , diffusion plateau, normal growth/exponential decay and stagnation. These regimes are linked numerically to the transition from Gauss-like to Boltzmann-like speed distributions. Further, the different evolution regimes are obtained analytically through velocity-space diffusion analysis. From these calculations the asymptotic root mean square of speed, initial plateau, and the growth/decay rates for intermediate number of collisions are determined in terms of the system parameters. The analytical calculations match the numerical experiments and point to a dynamical mechanism for thermalization, where inelastic collisions and a high-dimensional phase space lead to a bounded diffusion in the velocity space towards a stationary distribution function with a kind of reservoir temperature determined by the boundary oscillation amplitude and the restitution coefficient.
123 - A. De Pace 2014
By coupling a doorway state to a see of random background states, we develop the theory of doorway states in the framework of the random-phase approximation (RPA). Because of the symmetry of the RPA equations, that theory is radically different from the standard description of doorway states in the shell model. We derive the Pastur equation in the limit of large matrix dimension and show that the results agree with those of matrix diagonalization in large spaces. The complexity of the Pastur equation does not allow for an analytical approach that would approximately describe the doorway state. Our numerical results display unexpected features: The coupling of the doorway state with states of opposite energy leads to strong mutual attraction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا