ﻻ يوجد ملخص باللغة العربية
Galaxies in compact groups tend to be deficient in neutral hydrogen compared to isolated galaxies of similar optical properties. In order to investigate the role played by a hot intragroup medium (IGM) for the removal and destruction of HI in these systems, we have performed a Chandra and XMM-Newton study of eight of the most HI deficient Hickson compact groups. Diffuse X-ray emission associated with an IGM is detected in four of the groups, suggesting that galaxy-IGM interactions are not the dominant mechanism driving cold gas out of the group members. No clear evidence is seen for any of the members being currently stripped of any hot gas, nor for galaxies to show enhanced nuclear X-ray activity in the X-ray bright or most HI deficient groups. Combining the inferred IGM distributions with analytical models of representative disc galaxies orbiting within each group, we estimate the HI mass loss due to ram pressure and viscous stripping. While these processes are generally insufficient to explain observed HI deficiencies, they could still be important for HI removal in the X-ray bright groups, potentially removing more than half of the ISM in the X-ray bright HCG 97. Ram pressure may also have facilitated strangulation through the removal of galactic coronal gas. In X-ray undetected groups, tidal interactions could be playing a prominent role, but it remains an open question whether they can fully account for the observed HI deficiencies.
Galaxy clusters have long been theorised to quench the star-formation of their members. This study uses integral-field unit observations from the $K$-band Multi-Object Spectrograph (KMOS) - Cluster Lensing And Supernova survey with Hubble (CLASH) sur
While galaxies move through the intracluster medium of their host cluster, they experience a ram pressure which removes at least a significant part of their interstellar medium. This ram pressure stripping appears to be especially important for spira
We use a cosmological chemodynamical simulation to study how the group environment impacts the star formation properties of disk galaxies. The simulated group has a total mass of M~8x10^12 Msun and a total X-ray luminosity of L_X~10^41 erg s^-1. Our
By creating and analyzing the two dimensional gas temperature and abundance maps of the RGH 80 compact galaxy group with the high-quality Chandra data, we detect a high-abundance ($simeq 0.7$ $Z_odot$) arc, where the metal abundance is significantly
Numerous examples of ram pressure stripping in galaxy clusters are present in literature; however, substantially less work has been focused on ram pressure stripping in lower mass groups. In this work we use the LOFAR Two-metre Sky Survey (LoTSS) to