ﻻ يوجد ملخص باللغة العربية
Sample reuse techniques have significantly reduced the numerical complexity of probabilistic robustness analysis. Existing results show that for a nested collection of hyper-spheres the complexity of the problem of performing $N$ equivalent i.i.d. (identical and independent) experiments for each sphere is absolutely bounded, independent of the number of spheres and depending only on the initial and final radii. In this chapter we elevate sample reuse to a new level of generality and establish that the numerical complexity of performing $N$ equivalent i.i.d. experiments for a chain of sets is absolutely bounded if the sets are nested. Each set does not even have to be connected, as long as the nested property holds. Thus, for example, the result permits the integration of deterministic and probabilistic analysis to eliminate regions from an uncertainty set and reduce even further the complexity of some problems. With a more general view, the result enables the analysis of complex decision problems mixing real-valued and discrete-valued random variables.
In real-world problems, uncertainties (e.g., errors in the measurement, precision errors) often lead to poor performance of numerical algorithms when not explicitly taken into account. This is also the case for control problems, where optimal solutio
In this paper, we develop efficient randomized algorithms for estimating probabilistic robustness margin and constructing robustness degradation curve for uncertain dynamic systems. One remarkable feature of these algorithms is their universal applic
In this paper, we propose a sex-structured entomological model that serves as a basis for design of control strategies relying on releases of sterile male mosquitoes (Aedes spp) and aiming at elimination of the wild vector population in some target l
Vector or pest control is essential to reduce the risk of vector-borne diseases or crop losses. Among the available biological control tools, the Sterile Insect Technique (SIT) is one of the most promising. However, SIT-control campaigns must be care
We study dynamic allocation problems for discrete time multi-armed bandits under uncertainty, based on the the theory of nonlinear expectations. We show that, under strong independence of the bandits and with some relaxation in the definition of opti