ﻻ يوجد ملخص باللغة العربية
We show that the optical properties of an oblique layered system with two kinds of isotropic materials can be described using the concept of transformation media as long as the thickness of the layers is much smaller than the wavelength. Once the connection with transformation media is established, we then show that oblique layered system can serve as a universal element to build a variety of interesting functional optical components such as wave splitters, wave combiners, one-dimensional cloaking devices and reflectionless field rotators.
We suggest a scheme to manipulate paraxial diffraction by utilizing the dependency of a four-wave mixing process on the relative angle between the light fields. A microscopic model for four-wave mixing in a Lambda-type level structure is introduced a
Metamaterials represent one of the most vibrant fields of modern science and technology. They are generally dispersive structures in the direct and reciprocal space and time domains. Upon this consideration, I overview here a number of metamaterial i
We present a bi-orthogonal approach for modeling the response of localized electromagnetic resonators using quasinormal modes, which represent the natural, dissipative eigenmodes of the system with complex frequencies. For many problems of interest i
A new recipe for concealing objects from detection is suggested. Different with traditional cloak which deflects light around the core of the cloak to make the object inside invisible, our cloak guides the light to penetrate the core of the cloak but
We propose a geometry-specific, mode-selective quantization scheme in coupled field-emitter systems which makes it easy to include material and geometrical properties, intrinsic losses as well as the positions of an arbitrary number of quantum emitte