ترغب بنشر مسار تعليمي؟ اضغط هنا

Functional Optimization in Complex Excitable Networks

241   0   0.0 ( 0 )
 نشر من قبل Joaquin Torres
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effect of varying wiring in excitable random networks in which connection weights change with activity to mold local resistance or facilitation due to fatigue. Dynamic attractors, corresponding to patterns of activity, are then easily destabilized according to three main modes, including one in which the activity shows chaotic hopping among the patterns. We describe phase transitions to this regime, and show a monotonous dependence of critical parameters on the heterogeneity of the wiring distribution. Such correlation between topology and functionality implies, in particular, that tasks which require unstable behavior --such as pattern recognition, family discrimination and categorization-- can be most efficiently performed on highly heterogeneous networks. It also follows a possible explanation for the abundance in nature of scale--free network topologies.



قيم البحث

اقرأ أيضاً

We use a generic model for type-I excitability (known as the SNIPER or SNIC model) to describe the local dynamics of nodes within a network in the presence of non-zero coupling delays. Utilising the method of the Master Stability Function, we investi gate the stability of the zero-lag synchronised dynamics of the network nodes and its dependence on the two coupling parameters, namely the coupling strength and delay time. Unlike in the FitzHugh-Nagumo model (a model for type-II excitability), there are parameter ranges where the stability of synchronisation depends on the coupling strength and delay time. One important implication of these results is that there exist complex networks for which the adding of inhibitory links in a small-world fashion may not only lead to a loss of stable synchronisation, but may also restabilise synchronisation or introduce multiple transitions between synchronisation and desynchronisation. To underline the scope of our results, we show using the Stuart-Landau model that such multiple transitions do not only occur in excitable systems, but also in oscillatory ones.
112 - Alex Arenas 2006
We investigate the connection between the dynamics of synchronization and the modularity on complex networks. Simulating the Kuramotos model in complex networks we determine patterns of meta-stability and calculate the modularity of the partition the se patterns provide. The results indicate that the more stable the patterns are, the larger tends to be the modularity of the partition defined by them. This correlation works pretty well in homogeneous networks (all nodes have similar connectivity) but fails when networks contain hubs, mainly because the modularity is never improved where isolated nodes appear, whereas in the synchronization process the characteristic of hubs is to have a large stability when forming its own community.
In this chapter we discuss how the results developed within the theory of fractals and Self-Organized Criticality (SOC) can be fruitfully exploited as ingredients of adaptive network models. In order to maintain the presentation self-contained, we fi rst review the basic ideas behind fractal theory and SOC. We then briefly review some results in the field of complex networks, and some of the models that have been proposed. Finally, we present a self-organized model recently proposed by Garlaschelli et al. [Nat. Phys. 3, 813 (2007)] that couples the fitness network model defined by Caldarelli et al. [Phys. Rev. Lett. 89, 258702 (2002)] with the evolution model proposed by Bak and Sneppen [Phys. Rev. Lett. 71, 4083 (1993)] as a prototype of SOC. Remarkably, we show that the results obtained for the two models separately change dramatically when they are coupled together. This indicates that self-organized networks may represent an entirely novel class of complex systems, whose properties cannot be straightforwardly understood in terms of what we have learnt so far.
239 - Ginestra Bianconi 2008
We derive the spectral properties of adjacency matrix of complex networks and of their Laplacian by the replica method combined with a dynamical population algorithm. By assuming the order parameter to be a product of Gaussian distributions, the pres ent theory provides a solution for the non linear integral equations for the spectra density in random matrix theory of the spectra of sparse random matrices making a step forward with respect to the effective medium approximation (EMA) . We extend these results also to weighted networks with weight-degree correlations
We compare phase transition and critical phenomena of bond percolation on Euclidean lattices, nonamenable graphs, and complex networks. On a Euclidean lattice, percolation shows a phase transition between the nonpercolating phase and percolating phas e at the critical point. The critical point is stretched to a finite region, called the critical phase, on nonamenable graphs. To investigate the critical phase, we introduce a fractal exponent, which characterizes a subextensive order of the system. We perform the Monte Carlo simulations for percolation on two nonamenable graphs - the binary tree and the enhanced binary tree. The former shows the nonpercolating phase and the critical phase, whereas the latter shows all three phases. We also examine the possibility of critical phase in complex networks. Our conjecture is that networks with a growth mechanism have only the critical phase and the percolating phase. We study percolation on a stochastically growing network with and without a preferential attachment mechanism, and a deterministically growing network, called the decorated flower, to show that the critical phase appears in those models. We provide a finite-size scaling by using the fractal exponent, which would be a powerful method for numerical analysis of the phase transition involving the critical phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا