ترغب بنشر مسار تعليمي؟ اضغط هنا

Accretion-driven core collapse and the collisional formation of massive stars

94   0   0.0 ( 0 )
 نشر من قبل Cathie Clarke
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the conditions required for a cluster core to shrink, by adiabatic accretion of gas from the surrounding cluster, to densities such that stellar collisions are a likely outcome. We show that the maximum densities attained, and hence the viability of collisions, depends on a competition between core shrinkage (driven by accretion) and core puffing up (driven by relaxation effects). The expected number of collisions scales as $N_{core}^{5/3} tilde v^2$ where $N_{core}$ is the number of stars in the cluster core and $tilde v$ is the free fall velocity of the parent cluster (gas reservoir). Thus whereas collisions are very unlikely in a relatively low mass, low internal velocity system such as the Orion Nebula Cluster, they become considerably more important at the mass and velocity scale characteristic of globular clusters. Thus stellar collisions in response to accretion induced core shrinkage remains a viable prospect in more massive clusters, and may contribute to the production of intermediate mass black holes in these systems.



قيم البحث

اقرأ أيضاً

In the last decade there has been a remarkable increase in our knowledge about core-collapse supernovae (CC-SNe), and the birthplace of neutron stars, from both the observational and the theoretical point of view. Since the 1930s, with the first syst ematic supernova search, the techniques for discovering and studying extragalactic SNe have improved. Many SNe have been observed, and some of them, have been followed through efficiently and with detail. Furthermore, there has been a significant progress in the theoretical modelling of the scenario, boosted by the arrival of new generations of supercomputers that have allowed to perform multidimensional numerical simulations with unprecedented detail and realism. The joint work of observational and theoretical studies of individual SNe over the whole range of the electromagnetic spectrum has allowed to derive physical parameters, which constrain the nature of the progenitor, and the composition and structure of the stars envelope at the time of the explosion. The observed properties of a CC-SN are an imprint of the physical parameters of the explosion such as mass of the ejecta, kinetic energy of the explosion, the mass loss rate, or the structure of the star before the explosion. In this chapter, we review the current status of SNe observations and theoretical modelling, the connection with their progenitor stars, and the properties of the neutron stars left behind.
(Abriged) At present, there are two scenarios for the formation of massive stars: 1) The accretion scenario and 2) The coalescence scenario, which implies the merging of intermediate mass stars. We examine here some properties of the first one. We ca lculate three different sets of birthlines, i.e. tracks followed by a continuously accreting star. First, three models with a constant accretion rate ($dot{M}_{rm{accr}}$ = $10^{-6}$, $10^{-5}$, $10^{-4}$ M$_{odot}$ yr$^{-1}$). Then several birthlines following the accretion models of Bernasconi and Maeder (cite{BM96}), which have $dot{M}_{rm{accr}}$ increasing only slightly with mass. Finally we calculate several birthlines for which $dot{M}_{accr} = dot{M}_{mathrm{ref}} ({frac{M}{M_{odot}}}) ^{phi}$, with values of $phi$ equal to 0.5, 1.0 and 1.5 and also for different values of $dot{M}_{mathrm{ref}}$. The best fit to the observations of PMS stars in the HR diagram is achieved for $phi$ between 1.0 or 1.5 and for $dot{M}_{mathrm{ref}} simeq 10^{-5}$ M$_{odot}$ yr$^{-1}$. Considerations on the lifetimes favour values of $phi$ equal to 1.5. These accretion rates do well correspond to those derived from radio and IR observations of mass outflows. We emphasize the importance of the accretion scenario for shaping the IMF, and in particular for determining the upper mass limit of stars. In the accretion scenario, this upper mass limit will be given by the mass for which the accretion rate is such that the accretion induced shock luminosity is of the order of the Eddington luminosity.
We investigate observable signatures of a first-order quantum chromodynamics (QCD) phase transition in the context of core collapse supernovae. To this end, we conduct axially symmetric numerical relativity simulations with multi-energy neutrino tran sport, using a hadron-quark hybrid equation of state (EOS). We consider four non-rotating progenitor models, whose masses range from $9.6$ to $70$,M$_odot$. We find that the two less massive progenitor stars (9.6 and 11.2,M$_odot$) show a successful explosion, which is driven by the neutrino heating. They do not undergo the QCD phase transition and leave behind a neutron star (NS). As for the more massive progenitor stars (50 and 70,M$_odot$), the proto-neutron star (PNS) core enters the phase transition region and experiences the second collapse. Because of a sudden stiffening of the EOS entering to the pure quark matter regime, a strong shock wave is formed and blows off the PNS envelope in the 50,M$_odot$ model. Consequently the remnant becomes a quark core surrounded by hadronic matters, leading to the formation of the hybrid star. However for the 70,M$_odot$ model, the shock wave cannot overcome the continuous mass accretion and it readily becomes a black hole. We find that the neutrino and gravitational wave (GW) signals from supernova explosions driven by the hadron-quark phase transition are detectable for the present generation of neutrino and GW detectors. Furthermore, the analysis of the GW detector response reveals unique kHz signatures, which will allow us to distinguish this class of supernova explosions from failed and neutrino-driven explosions.
474 - Fabian Heitsch 2007
We study numerically the formation of molecular clouds in large-scale colliding flows including self-gravity. The models emphasize the competition between the effects of gravity on global and local scales in an isolated cloud. Global gravity builds u p large-scale filaments, while local gravity -- triggered by a combination of strong thermal and dynamical instabilities -- causes cores to form. The dynamical instabilities give rise to a local focusing of the colliding flows, facilitating the rapid formation of massive protostellar cores of a few 100 M$_odot$. The forming clouds do not reach an equilibrium state, though the motions within the clouds appear comparable to ``virial. The self-similar core mass distributions derived from models with and without self-gravity indicate that the core mass distribution is set very early on during the cloud formation process, predominantly by a combination of thermal and dynamical instabilities rather than by self-gravity.
We study feedback during massive star formation using semi-analytic methods, considering the effects of disk winds, radiation pressure, photoevaporation and stellar winds, while following protostellar evolution in collapsing massive gas cores. We fin d that disk winds are the dominant feedback mechanism setting star formation efficiencies (SFEs) from initial cores of ~0.3-0.5. However, radiation pressure is also significant to widen the outflow cavity causing reductions of SFE compared to the disk-wind only case, especially for >100Msun star formation at clump mass surface densities Sigma<0.3g/cm2. Photoevaporation is of relatively minor importance due to dust attenuation of ionizing photons. Stellar winds have even smaller effects during the accretion stage. For core masses Mc~10-1000Msun and Sigma~0.1-3g/cm2, we find the overall SFE to be 0.31(Rc/0.1pc)^{-0.39}, potentially a useful sub-grid star-formation model in simulations that can resolve pre-stellar core radii, Rc=0.057(Mc/60Msun)^{1/2}(Sigma/g/cm2)^{-1/2}pc. The decline of SFE with Mc is gradual with no evidence for a maximum stellar-mass set by feedback processes up to stellar masses of ~300Msun. We thus conclude that the observed truncation of the high-mass end of the IMF is shaped mostly by the pre-stellar core mass function or internal stellar processes. To form massive stars with the observed maximum masses of ~150-300Msun, initial core masses need to be >500-1000Msun. We also apply our feedback model to zero-metallicity primordial star formation, showing that, in the absence of dust, photoevaporation staunches accretion at ~50Msun. Our model implies radiative feedback is most significant at metallicities ~10^{-2}Zsun, since both radiation pressure and photoevaporation are effective in this regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا