ﻻ يوجد ملخص باللغة العربية
We present low-temperature anelastic and dielectric spectroscopy measurements on the perovskite ionic conductor BaCe(1-x)Y(x)O(3-x/2) in the protonated, deuterated and outgassed states. Three main relaxation processes are ascribed to proton migration, reorientation about an Y dopant and tunneling around a same O atom. An additional relaxation maximum appears only in the dielectric spectrum around 60 K, and does not involve H motion, but may be of electronic origin, e.g. small polaron hopping. The peak at the lowest temperature, assigned to H tunneling, has been fitted with a relaxation rate presenting crossovers from one-phonon transitions, nearly independent of temperature, to two-phonon processes, varying as T^7, to Arrhenius-like. Substituting H with D lowers the overall rate by 8 times. The corresponding peak in the dielectric loss has an intensity nearly 40 times smaller than expected from the classical reorientation of the electric dipole associated with the OH complex. This fact is discussed in terms of coherent tunneling states of H in a cubic and orthorhombically distorted lattice, possibly indicating that only H in the symmetric regions of twin boundaries exhibit tunneling, and in terms of reduction of the effective dipole due to lattice polarization.
Phonons are produced when an excited vacancy in cuprous oxide (Cu$_2$O) relaxes. Time resolved luminescence was used to find the excited copper vacancy (acceptor) and oxygen vacancy (donor) trap levels and lifetimes. It was also used to determine the
Excited configurations of hydrogen in the oxyhydride BaTiO$_{3-x}$H$_x$ ($x=0.1-0.5$), which are considered to be involved in its hydrogen transport and exchange processes, were investigated by positive muon spin relaxation ($mu^+$SR) spectroscopy us
In a systematic study we investigate the effect of dopant level and hydration on the short-range structure of the proton conducting perovskite-type oxide BaIn_{x}Zr_{1-x}O_{3-x/2} (x = 0-0.75), using infrared and Raman spectroscopy. The results show
The rhodium doping in the LaCo$_{1-x}$Rh$_{x}$O$_3$ perovskite series ($x=0.02-0.5$) has been studied by X-ray diffraction, electric transport and magnetization measurements, complemented by electronic structure GGA+U calculations in supercell for di
The purpose of this study was to investigate the magnetotransport properties of the Ge(0.743)Pb(0.183)Mn(0.074)Te mixed crystal. The results of magnetization measurements indicated that the compound is a spin-glass-like diluted magnetic semiconductor