ترغب بنشر مسار تعليمي؟ اضغط هنا

An Algorithm For Photometric Identification Of Transiting Circumbinary Planets

63   0   0.0 ( 0 )
 نشر من قبل Aviv Ofir
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Aviv Ofir




اسأل ChatGPT حول البحث

Transiting planets manifest themselves by a periodic dimming of their host star by a fixed amount. On the other hand, light curves of transiting circumbinary (CB) planets are expected to be neither periodic nor to have a single depth while in transit. These propertied make the popular transit finding algorithm BLS almost ineffective so a modified version of BLS for the identification of CB planets was developed - CB-BLS. We show that using this algorithm it is possible to find CB planets in the residuals of light curves of eclipsing binaries that have noise levels of 1% and more - quality that is routinely achieved by current ground-based transit surveys. Previous searches for CB planets using variation of eclipse times minima of CM Dra and elsewhere are more closely related to radial velocity than to transit searches and so are quite distinct from CB-BLS. Detecting CB planets is expected to have significant impact on our understanding of exoplanets in general, and exoplanet formation in particular. Using CB-BLS will allow to easily harness the massive ground- and space- based photometric surveys in operation to look for these hard-to-find objects.

قيم البحث

اقرأ أيضاً

The herein presented analytical framework fully describes the motion of coplanar systems consisting of a stellar binary and a planet orbiting both stars on orbital as well as secular timescales. Perturbations of the Runge-Lenz vector are used to deri ve short period evolution of the system, while octupole secular theory is applied to describe its long term behaviour. A post Newtonian correction on the stellar orbit is included. The planetary orbit is initially circular and the theory developed here assumes that the planetary eccentricity remains relatively small (e_2<0.2). Our model is tested against results from numerical integrations of the full equations of motion and is then applied to investigate the dynamical history of some of the circumbinary planetary systems discovered by NASAs Kepler satellite. Our results suggest that the formation history of the systems Kepler-34 and Kepler-413 has most likely been different from the one of Kepler-16, Kepler-35, Kepler-38 and Kepler-64, since the observed planetary eccentricities for those systems are not compatible with the assumption of initially circular orbits.
The abundance and properties of planets orbiting binary stars - circumbinary planets - are largely unknown because they are difficult to detect with currently available techniques. Results from the Kepler satellite and other studies indicate a minimu m occurrence rate of circumbinary giant planets of ~10 %, yet only a handful are presently known. Here, we study the potential of ESAs Gaia mission to discover and characterise extrasolar planets orbiting nearby binary stars by detecting the binarys periodic astrometric motion caused by the orbiting planet. We expect that Gaia will discover hundreds of giant planets around binaries with FGK dwarf primaries within 200 pc of the Sun, if we assume that the giant planet mass distribution and abundance are similar around binaries and single stars. If on the other hand all circumbinary gas giants have masses lower than two Jupiter masses, we expect only four detections. Gaia is critically sensitive to the properties of giant circumbinary planets and will therefore make the detailed study of their population possible. Gaias precision is such that the distribution in mutual inclination between the binary and planetary orbital planes will be obtained. It also possesses the capacity to establish the frequency of planets across the H-R diagram, both as a function of mass and of stellar evolutionary state from pre-main sequence to stellar remnants. Gaias discoveries can reveal whether a second epoch of planetary formation occurs after the red-giant phase.
Most Sun-like stars in the Galaxy reside in gravitationally-bound pairs of stars called binary stars. While long anticipated, the existence of a circumbinary planet orbiting such a pair of normal stars was not definitively established until the disco very of Kepler-16. Incontrovertible evidence was provided by the miniature eclipses (transits) of the stars by the planet. However, questions remain about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we present two additional transiting circumbinary planets, Kepler-34 and Kepler-35. Each is a low-density gas giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 orbits two Sun-like stars every 289 days, while Kepler-35 orbits a pair of smaller stars (89% and 81% of the Suns mass) every 131 days. Due to the orbital motion of the stars, the planets experience large multi-periodic variations in incident stellar radiation. The observed rate of circumbinary planets implies > ~1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.
One of the obstacles in the search for exoplanets via transits is the large number of candidates that must be followed up, few of which ultimately prove to be exoplanets. Any method that could make this process more efficient by somehow identifying t he best candidates and eliminating the worst would therefore be very useful. Seager and Mallen-Ornelas (2003) demonstrated that it was possible to discern between blends and exoplanets using only the photometric characteristics of the transits. However, these techniques are critically dependent on the shape of the transit, characterization of which requires very high precision photometry of a sort that is atypical for candidates identified from transit searches. We present a method relying only on transit duration, depth, and period, which require much less precise photometry to determine accurately. The numerical tool we derive, the exoplanet diagnostic eta, is intended to identify the subset of candidates from a transit search that is most likely to contain exoplanets, and thus most worthy of subsequent follow-up studies. The effectiveness of the diagnostic is demonstrated with its success in separating modeled exoplanetary transits and interlopers, and by applying it to actual OGLE transit candidates.
The Kepler mission has detected a number of transiting circumbinary planets (CBPs). Although currently not detected, exomoons could be orbiting some of these CBPs, and they might be suitable for harboring life. A necessary condition for the existence of such exomoons is their long-term dynamical stability. Here, we investigate the stability of exomoons around the Kepler CBPs using numerical $N$-body integrations. We determine regions of stability and obtain stability maps in the (a_m,i_pm) plane, where a_m is the initial exolunar semimajor axis with respect to the CBP, and i_pm is the initial inclination of the orbit of the exomoon around the planet with respect to the orbit of the planet around the stellar binary. Ignoring any dependence on i_pm, for most Kepler CBPs the stability regions are well described by the location of the 1:1 mean motion commensurability of the binary orbit with the orbit of the moon around the CBP. This is related to a destabilizing effect of the binary compared to the case if the binary were replaced by a single body, and which is borne out by corresponding 3-body integrations. For high inclinations, the evolution is dominated by Lidov-Kozai oscillations, which can bring moons in dynamically stable orbits to close proximity within the CBP, triggering strong interactions such as tidal evolution, tidal disruption, or direct collisions. This suggests that there is a dearth of highly-inclined exomoons around the Kepler CBPs, whereas coplanar exomoons are dynamically allowed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا