ترغب بنشر مسار تعليمي؟ اضغط هنا

Lopsided galaxies: the case of NGC 891

479   0   0.0 ( 0 )
 نشر من قبل Michela Mapelli
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has been known for a long time that a large fraction of disc galaxies are lopsided. We simulate three different mechanisms that can induce lopsidedness: flyby interactions, gas accretion from cosmological filaments and ram pressure from the intergalactic medium. Comparing the morphologies, HI spectrum, kinematics and m=1 Fourier components, we find that all of these mechanisms can induce lopsidedness in galaxies, although in different degrees and with observable consequences. The timescale over which lopsidedness persists suggests that flybys can contribute to ~20 per cent of lopsided galaxies. We focus our detailed comparison on the case of NGC 891, a lopsided, edge-on galaxy with a nearby companion (UGC 1807). We find that the main properties of NGC 891 (morphology, HI spectrum, rotation curve, existence of a gaseous filament pointing towards UGC 1807) favour a flyby event for the origin of lopsidedness in this galaxy.



قيم البحث

اقرأ أيضاً

We compare 850um SCUBA images of NGC 891 with the corresponding V-band optical depth predicted from radiation transfer simulations. These two tracers of dust show a very similar distribution along the minor axis and a reasonable agreement along the m ajor axis. Assuming that the grains responsible for optical extinction are also the source of 850um emission we derive a submillimeter emissivity (emission efficiency) for dust in the NGC 891 disk. This quantity is found to be a factor of 2-3 higher than the generally-accepted (but highly uncertain) values adopted for the Milky Way. It should be stated, however, that if a substantial fraction of dust in NGC 891 is clumped, the emissivity in the two galaxies may be quite similar. We use our newly-acquired emissivity to convert our 850um images into detailed maps of dust mass and, utilizing 21cm and CO-emission data for NGC 891, derive the gas-to-dust ratio along the disk. We compute an average ratio of 260 -- a value consistent with the Milky Way and external spirals within the uncertainties in deriving both the dust mass and the quantity of molecular gas. The bulk of dust in NGC 891 appears to be closely associated with the molecular gas phase although it may start to follow the distribution of atomic hydrogen at radii >9 kpc (i.e. >0.5 R_25). Using the optical depth of the NGC 891 disk, we quantify how light emitted at high redshift is attenuated by dust residing in foreground spirals. For B-band observations of galaxies typically found in the Hubble Deep Field, the amount of light lost is expected to be small (~ 5%). This value depends critically on the maximum radial extent of cold dust in spiral disks (which is poorly known). It may also represent a lower limit if galaxies expel dust over time into the intergalactic medium.
118 - Edo Noordermeer 2001
Lopsidedness is a common feature in galaxies, both in the distribution of light and in the kinematics. We investigate the kinematics of a model for lopsided galaxies that consists of a disc lying off-centre in a dark halo, and circling around the hal o centre. We search for families of stable, closed, non-crossing orbits, and assume that gas in our galaxies moves on these orbits. Several of our models show strong lopsided gas kinematics, especially the ones in which the disc spins around its axis in a retrograde sense compared to its motion around the halo centre. We are able to reproduce the HI velocity map of the kinematically lopsided galaxy NGC 4395. The lopsidedness in our models is most pronounced in the models where the halo provides a relatively large fraction of the total mass at small radii. This may explain why the gas shows lopsidedness more frequently in late-type galaxies, which are dominated by dark matter. Surfaces of section show large regions of irregular orbits in the models where the halo density is low. This may indicate that these models are unstable.
The distribution of smaller satellite galaxies around large central galaxies has attracted attention because peculiar spatial and kinematic configurations have been detected in some systems. A particularly striking example of such behavior is seen in the satellite system of the Andromeda galaxy, where around 80% are on the nearside of that galaxy, facing the Milky Way. Motivated by this departure from anisotropy, we examined the spatial distribution of satellites around pairs of galaxies in the SDSS. By stacking tens of thousands of satellites around galaxy pairs we found that satellites tend to bulge towards the other central galaxy, preferably occupying the space between the pair, rather than being spherically or axis-symmetrically distributed around each host. The bulging is a function of the opening angle examined and is fairly strong -- there are up to $sim$10% more satellites in the space between the pair, than expected from uniform. Consequently, it is a statistically very strong signal, being inconsistent with a uniform distribution at the 5$sigma$ level. The possibility that the observed signal is the result of the overlap of two haloes with extended satellite distributions, is ruled out by testing this hypothesis by performing the same tests on isolated galaxies (and their satellites) artificially placed at similar separations. These findings highlight the unrelaxed and interacting nature of galaxies in pairs.
Galaxies are surrounded by halos of hot gas whose mass and origin remain unknown. One of the most challenging properties to measure is the metallicity, which constrains both of these. We present a measurement of the metallicity around NGC 891, a near by, edge-on, Milky Way analog. We find that the hot gas is dominated by low metallicity gas near the virial temperature at $kT=0.20pm0.01$ keV and $Z/Z_{odot} = 0.14pm0.03$(stat)$^{+0.08}_{-0.02}$(sys), and that this gas co-exists with hotter ($kT=0.71pm0.04$ keV) gas that is concentrated near the star-forming regions in the disk. Model choices lead to differences of $Delta Z/Z_{odot} sim 0.05$, and higher $S/N$ observations would be limited by systematic error and plasma emission model or abundance ratio choices. The low metallicity gas is consistent with the inner part of an extended halo accreted from the intergalactic medium, which has been modulated by star formation. However, there is much more cold gas than hot gas around NGC 891, which is difficult to explain in either the accretion or supernova-driven outflow scenarios. We also find a diffuse nonthermal excess centered on the galactic center and extending to 5 kpc above the disk with a 0.3-10 keV $L_X = 3.1times 10^{39}$ erg s$^{-1}$. This emission is inconsistent with inverse Compton scattering or single-population synchrotron emission, and its origin remains unclear.
Submillimetre maps of NGC 891 have been obtained with the PRONAOS balloon-borne telescope and with the ISOPHOT instrument on board the ISO satellite. In this article, we also gather data from IRAS and SCUBA to present the complete submillimetre spect rum of this nearby edge-on spiral galaxy. We derive submillimetre emission profiles along the major axis. The modified blackbody fits, assuming a single dust component, lead to temperatures of 19-24 K toward the centre and 18-20 K toward the edges, with possible variations of the dust spectral index from 1.4 to 2. The two-component fits lead to a warm component temperature of 29 K all along the galaxy with a cold component at 16 K. The interstellar medium masses derived by these two methods are quite different: 4.6 x 10^9 Mo in the case of the one-component model and 12 x 10^9 Mo in the case of the two-component one. This two-component fit indicates that the cold dust to warm dust ratio is 20 to 40, the highest values being in the wings of this galaxy. Comparing to dust mass estimates, both estimations of the ISM mass are consistent with a gas to dust mass ratio of 240, which is close to the Milky Way value. Our results illustrate the importance of accurate submillimetre spectra to derive masses of the interstellar medium in galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا