ﻻ يوجد ملخص باللغة العربية
The detection of the 6.7 GHz line of methanol (CH3OH) is reported for the first time toward an object beyond the Magellanic Clouds. Using the Effelsberg 100 m telescope, two absorption features were identified toward the Seyfert 2 galaxy NGC 3079. Both components probably originated on lines-of-sight toward the central region, presumably absorbing the radio continuum of the nuclear sources A, B, and E of NGC 3079. One absorption feature, at the systemic velocity, is narrow and may arise from gas not related to the nuclear environment of the galaxy. The weaker blue-shifted component is wider and may trace outflowing gas. Total A-type CH3OH column densities are estimated to be between a few times 10^13 and a few times 10^15 cm^-2. Because of a highly frequency-dependent continuum background, the overall similarity of HI, OH, and CH3OH absorption profiles hints at molecular clouds that cover the entire area occupied by the nuclear radio continuum sources ~ 4 pc.
We report the detection of emission from the 6.7 GHz 5(1)-6(0)A+ transition of methanol towards the center of the nearby galaxy NGC4945. This is the first detection of emission in this transition beyond the local group. The isotropic luminosity of th
To investigate whether distinctions exist between low and high-luminosity Class II 6.7-GHz methanol masers, we have undertaken multi-line mapping observations of various molecular lines, including the NH3(1,1), (2,2), (3,3), (4,4) and 12CO(1-0) trans
Emission from the 6.7 GHz methanol maser transition is very strong, is relatively stable, has small internal motions, and is observed toward numerous massive star-forming regions in the Galaxy. Our goal is to perform high-precision astrometry using t
Using the 870-$mu$m APEX Telescope Large Area Survey of the Galaxy (ATLASGAL), we have identified 577 submillimetre continuum sources with masers from the methanol multibeam (MMB) survey in the region $280degr < ell < 20degr$; $|,b,| < 1.5degr$. 94,p
Methanol masers at 6.7 GHz are well known tracers of high-mass star-forming regions. However, their origin is still not clearly understood. We aimed to determine the morphology and velocity structure for a large sample of the maser emission with gene