ترغب بنشر مسار تعليمي؟ اضغط هنا

Looking for intrinsic charm in the forward region at BNL RHIC and CERN LHC

64   0   0.0 ( 0 )
 نشر من قبل Victor Goncalves
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The complete understanding of the basic constituents of hadrons and the hadronic dynamics at high energies are two of the main challenges for the theory of strong interactions. In particular, the existence of intrinsic heavy quark components in the hadron wave function must be confirmed (or disproved). In this paper we propose a new mechanism for the production of $D$-mesons at forward rapidities based on the Color Glass Condensate (CGC) formalism and demonstrate that the resulting transverse momentum spectra are strongly dependent on the behavior of the charm distribution at large Bjorken $x$. Our results show clearly that the hypothesis of intrinsic charm can be tested in $pp$ and $p(d) A$ collisions at RHIC and LHC.

قيم البحث

اقرأ أيضاً

We study $D$ - meson production at forward rapidities taking into account the non - linear effects in the QCD dynamics and the intrinsic charm component of the proton wave function. The total cross section, the rapidity distributions and the Feynman - $x$ distributions are calculated for $p p$ collisions at different center of mass energies. Our results show that, at the LHC, the intrinsic charm component changes the $D$ rapidity distributions in a region which is beyond the coverage of the LHCb detectors. At higher energies the IC component dominates the $y$ and $x_F$ distributions exactly in the range where the produced $D$ mesons decay and contribute the most to the prompt atmospheric neutrino flux measured by the ICECUBE Collaboration. We compute the $x_F$ - distributions and demonstrate that they are enhanced at LHC energies by approximately one order of magnitude in the $0.2 le x_F le 0.8$ range.
Theoretical predictions of the prompt atmospheric neutrino flux have large uncertainties associated with charm hadron production, by far the dominant source of prompt neutrinos in the atmosphere. The flux of cosmic rays, with its steeply falling ener gy spectrum, weights the forward production of charm in the evaluation of the atmospheric neutrino flux at high energies. The current LHCb experiment at CERN constrains charm production in kinematic regions relevant to the prompt atmospheric neutrino flux. The proposed Forward Physics Facility has additional capabilities to detect neutrino fluxes from forward charm production at the LHC. We discuss the implications of the current and planned experiments on the development of theoretical predictions of the high energy atmospheric neutrino flux.
72 - L. Frankfurt 2015
We argue that with an increase of the collision energy, elastic photoproduction of $rho$ mesons on nuclei becomes affected by the significant cross section of photon inelastic diffraction into large masses, which results in the sizable inelastic nucl ear shadowing correction to $sigma_{gamma A to rho A}$ and the reduced effective $rho$-nucleon cross section. We take these effects into account by combining the vector meson dominance model, which we upgrade to include the contribution of high-mass fluctuations of the photon according to QCD constraints, and the Gribov-Glauber approximation for nuclear shadowing, where the inelastic nuclear shadowing is included by means of cross section fluctuations. The resulting approach allows us to successfully describe the data on elastic $rho$ photoproduction on nuclei in heavy ion UPCs in the $7 {rm GeV} < W_{gamma p} < 46$ GeV energy range and to predict the value of the cross section of coherent $rho$ photoproduction in Pb-Pb UPCs at $sqrt{s_{NN}}=5.02$ TeV in Run 2 at the LHC, $dsigma_{Pb Pb to rho Pb Pb} (y=0)/dy= 560 pm 25$ mb.
We test the hypothesis that configurations of a proton with a large-$x$ parton, $x_p gtrsim 0.1$, have a smaller than average size. The QCD $Q^2$ evolution equations suggest that these small configurations also have a significantly smaller interactio n strength, which has observable consequences in collisions with nuclei. We perform a global analysis of jet production data in proton- and deuteron-nucleus collisions at RHIC and the LHC. Using a model which takes a distribution of interaction strengths into account, we quantitatively extract the $x_p$-dependence of the average interaction strength, $sigma(x_p)$, over a wide kinematic range. By comparing the RHIC and LHC results, our analysis finds that the interaction strength for small configurations, while suppressed, grows faster with collision energy than does that for average configurations. We check that this energy dependence is consistent with the results of a method which, given $sigma(x_p)$ at one energy, can be used to quantitatively predict that at another. This finding further suggests that at even lower energies, nucleons with a large-$x_p$ parton should interact much more weakly than those in an average configuration, a phenomenon in line with explanations of the EMC effect for large-$x_p$ quarks in nuclei based on color screening.
Despite rather long-term theoretical and experimental studies, the hypothesis of the non-zero intrinsic (or valence-like) heavy quark component of the proton distribution functions has not yet been confirmed or rejected. The LHC with $pp$-collisions at $sqrt{s}=$ 7--14 TeV will obviously supply extra unique information concerning the above-mentioned component of the proton. To use the LHC potential, first of all, one should select the parton-level (sub)processes (and final-state signatures) that are most sensitive to the intrinsic heavy quark contributions. To this end inclusive production of $c(b)$-jets accompanied by photons is considered. On the basis of the performed theoretical study it is demonstrated that the investigation of the intrinsic heavy quark contributions looks very promising at the LHC in processes such as $pprightarrow gamma+ c(b)+X$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا