ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling water emission from low-mass protostellar envelopes

121   0   0.0 ( 0 )
 نشر من قبل Tim van Kempen
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Within low-mass star formation, water vapor plays a key role in the chemistry and energy balance of the circumstellar material. The Herschel Space Observatory will open up the possibility to observe water lines originating from a wide range of excitation energies.Our aim is to simulate the emission of rotational water lines from envelopes characteristic of embedded low-mass protostars. A large number of parameters that influence the water line emission are explored: luminosity, density,density slope and water abundances.Both dust and water emission are modelled using full radiative transfer in spherical symmetry. The temperature profile is calculated for a given density profile. The H2O level populations and emission profiles are in turn computed with a non-LTE line code. The results are analyzed to determine the diagnostic value of different lines, and are compared with existing observations. Lines can be categorized in: (i) optically thick lines, including ground-state lines, mostly sensitive to the cold outer part; (ii) highly excited (E_u>200-250 K) optically thin lines sensitive to the abundance in the hot inner part; and (iii) lines which vary from optically thick to thin depending on the abundances. Dust influences the emission of water significantly by becoming optically thick at the higher frequencies, and by pumping optically thin lines. A good physical model of a source, including a correct treatment of dust, is a prerequisite to infer the water abundance structure and possible jumps at the evaporation temperature from observations. The inner warm (T>100 K) envelope can be probed byhighly-excited lines, while a combination of excited and spectrally resolved ground state lines probes the outer envelope. Observations of H218O lines, although weak, provide even stronger constraints on abundances.

قيم البحث

اقرأ أيضاً

We present theoretical predictions of the rotational line emission of deuterated water in low-mass protostar collapsing envelopes. The model accounts for the density and temperature structure of the envelope, according the inside-out collapse framewo rk. The deuterated water abundance profile is approximated by a step function, with a low value in the cold outer envelope and a higher value in the inner envelope where the grain mantles evaporate. The two abundances are the two main parameters of the modeling, along with the temperature at which the mantles evaporate. We report line flux predictions for a 30 and 5 L$_odot$ source luminosity respectively. We show that ground based observations are capable to constrain the three parameters of the model in the case of bright low-mass protostars (L$>$10 L$_{odot}$), and that no space based observations, like for example HSO observations, are required in this case. On the contrary, we show that the study of low-luminosity sources (L$<$10 L$_{odot}$), assuming the same HDO abundance profile, requires too much integration time to be carried out either with available ground-based telescopes or with the HIFI instrument on board HSO. For these sources, only the large interferometer ALMA will allow to constrain the HDO abundance.
Recent water line observations toward several low-mass protostars suggest low water gas fractional abundances in the inner warm envelopes. Water destruction by X-rays has been proposed to influence the water abundances in these regions, but the detai led chemistry, including the nature of alternative oxygen carriers, is not yet understood. In this study, we aim to understand the impact of X-rays on the composition of low-mass protostellar envelopes, focusing specifically on water and related oxygen bearing species. We compute the chemical composition of two low-mass protostellar envelopes using a 1D gas-grain chemical reaction network, under various X-ray field strengths. According to our calculations, outside the water snowline, the water gas abundance increases with $L_{mathrm{X}}$. Inside the water snowline, water maintains a high abundance of $sim 10^{-4}$ for small $L_{mathrm{X}}$, with water and CO being the dominant oxygen carriers. For large $L_{mathrm{X}}$, the water gas abundances significantly decrease just inside the water snowline (down to $sim10^{-8}-10^{-7}$) and in the innermost regions ($sim10^{-6}$). For these cases, the O$_{2}$ and O gas abundances reach $sim 10^{-4}$ within the water snowline, and they become the dominant oxygen carriers. The HCO$^{+}$ and CH$_{3}$OH abundances, which have been used as tracers of the water snowline, significantly increase/decrease within the water snowline, respectively, as the X-ray fluxes become larger. The abundances of some other dominant molecules, such as CO$_{2}$, OH, CH$_{4}$, HCN, and NH$_{3}$, are also affected by strong X-ray fields, especially within their own snowlines. These X-ray effects are larger in lower density envelope models. Future observations of water and related molecules (using e.g., ALMA and ngVLA) will access the regions around protostars where such X-ray induced chemistry is effective.
We derive the dense core structure and the water abundance in four massive star-forming regions which may help understand the earliest stages of massive star formation. We present Herschel-HIFI observations of the para-H2O 1_11-0_00 and 2_02-1_11 and the para-H2-18O 1_11-0_00 transitions. The envelope contribution to the line profiles is separated from contributions by outflows and foreground clouds. The envelope contribution is modelled using Monte-Carlo radiative transfer codes for dust and molecular lines (MC3D and RATRAN), with the water abundance and the turbulent velocity width as free parameters. While the outflows are mostly seen in emission in high-J lines, envelopes are seen in absorption in ground-state lines, which are almost saturated. The derived water abundances range from 5E-10 to 4E-8 in the outer envelopes. We detect cold clouds surrounding the protostar envelope, thanks to the very high quality of the Herschel-HIFI data and the unique ability of water to probe them. Several foreground clouds are also detected along the line of sight. The low H2O abundances in massive dense cores are in accordance with the expectation that high densities and low temperatures lead to freeze-out of water on dust grains. The spread in abundance values is not clearly linked to physical properties of the sources.
Determining the locations of the major snowlines in protostellar environments is crucial to fully understand the planet formation process and its outcome. Despite being located far enough from the central star to be spatially resolved with ALMA, the CO snowline remains difficult to detect directly in protoplanetary disks. Instead, its location can be derived from N$_2$H$^+$ emission, when chemical effects like photodissociation of CO and N$_2$ are taken into account. The water snowline is even harder to observe than that for CO, because in disks it is located only a few AU from the protostar, and from the ground only the less abundant isotopologue H$_2^{18}$O can be observed. Therefore, using an indirect chemical tracer, as done for CO, may be the best way to locate the water snowline. A good candidate tracer is HCO$^+$, which is expected to be particularly abundant when its main destructor, H$_2$O, is frozen out. Comparison of H$_2^{18}$O and H$^{13}$CO$^+$ emission toward the envelope of the Class 0 protostar IRAS2A shows that the emission from both molecules is spatially anticorrelated, providing a proof of concept that H$^{13}$CO$^+$ can indeed be used to trace the water snowline in systems where it cannot be imaged directly.
We have made mapping observations of L1551 IRS 5, L1551NE, L723, and L43 and single-point observations of IRAS 16293-2422 in the submillimeter CS (J = 7-6) and HCN (J = 4-3) lines with ASTE. Including our previous ASTE observations of L483 and B335, we found a clear linear correlation between the source bolometric luminosities and the total integrated intensities of the submillimeter lines (I_CS ~L_bol^0.92). The combined ASTE + SMA CS (7-6) image of L1551 IRS 5 exhibits an extended (~2000 AU) component tracing the associated reflection nebula at the west and southwest, as well as a compact (< 500 AU) component centered on the protostellar position. The emission peaks of the CS and HCN emissions in L1551 NE are not located at the protostellar position but offset (~1400 AU) toward the associated reflection nebula at the west. With the statistical analyses, we confirmed the opposite velocity gradients of the CS (7-6) emission to those of the millimeter lines along the outflow direction, which we reported in our early paper. The magnitudes of the submillimeter velocity gradients are estimated to be (9.7pm1.7) times 10-3 km s-1 arcsec-1 in L1551 IRS 5 and (7.6pm2.4) times 10-3 km s-1 arcsec-1 in L483. We suggest that the skewed submillimeter molecular emissions toward the associated reflection nebulae at a few thousands AU scale trace the warm (> 40 K) walls of the envelope cavities, excavated by the associated outflows and irradiated by the central protostars directly. The opposite velocity gradients along the outflow direction likely reflect the dispersing gas motion at the wall of the cavity in the envelopes perpendicular to the outflow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا