ترغب بنشر مسار تعليمي؟ اضغط هنا

Indications of Conical Emission of Charged Hadrons at the BNL Relativistic Heavy Ion Collider

175   0   0.0 ( 0 )
 نشر من قبل Fuqiang Wang
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d+Au, and Au+Au collisions at 200 GeV by the STAR experiment. Dijet structures are observed in pp, d+Au and peripheral Au+Au collisions. An additional structure is observed in central Au+Au data, signaling conical emission of correlated charged hadrons. The conical emission angle is found to be 1.37 +- 0.02(stat) +0.06-0.07(syst), independent of pt.



قيم البحث

اقرأ أيضاً

We present systematic measurements of azimuthal anisotropy for strange and multistrange hadrons ($K^{0}_{s}$, $Lambda$, $Xi$, and $Omega$) and $phi$ mesons at midrapidity ($|y| <$ 1.0) in collisions of U + U nuclei at $sqrt{s_{NN}} = 193$ GeV, record ed by the STAR detector at the Relativistic Heavy Ion Collider. Transverse momentum ($p_{text{T}}$) dependence of flow coefficients ($v_{2}$, $v_{3}$, and $v_{4}$) is presented for minimum bias collisions and three different centrality intervals. Number of constituent quark scaling of the measured flow coefficients in U + U collisions is discussed. We also present the ratio of $v_{n}$ scaled by the participant eccentricity ($varepsilon_{n}leftlbrace 2 rightrbrace$) to explore system size dependence and collectivity in U + U collisions. The magnitude of $v_{2}/varepsilon_{2}$ is found to be smaller in U + U collisions than that in central Au + Au collisions contradicting naive eccentricity scaling. Furthermore, the ratios between various flow harmonics ($v_{3}/v_{2}^{3/2}$, $v_{4}/v_{2}^{4/2}$) are studied and compared with hydrodynamic and transport model calculations.
107 - M.Petrovici , A.Lindner , A.Pop 2018
Based on the recent RHIC and LHC experimental results, the $langle p_Trangle$ dependence of identified light flavour charged hadrons on $sqrt{(frac{dN}{dy})/S_{perp}}$, relevant scale in gluon saturation picture, is studied from $sqrt{s_{NN}}$=7.7 Ge V up to 5.02 TeV. This study is extended to the slopes of the $langle p_Trangle$ dependence on the particle mass and the $langlebeta_Trangle$ parameter from Boltzmann-Gibbs Blast Wave (BGBW) fits of the $p_T$ spectra. A systematic decrease of the slope of the $langle p_Trangle$ dependence on $sqrt{(frac{dN}{dy})/S_{perp}}$ from BES to the LHC energies is evidenced. While for the RHIC energies, within the experimental errors, the $langle p_Trangle$/$sqrt{(frac{dN}{dy})/S_{perp}}$ does not depend on centrality, at the LHC energies a deviation from a linear behaviour is observed towards the most central collisions. The influence of the corona contribution to the observed trends is discussed. The slopes of the $langle p_Trangle$ particle mass dependence and the $langlebeta_Trangle$ parameter from BGBW fits scale well with $sqrt{(frac{dN}{dy})/S_{perp}}$. Similar systematic trends for pp at $sqrt{s}$=7 TeV are in a good agreement with the ones corresponding to Pb-Pb collisions at $sqrt{s_{NN}}$=2.76 TeV and 5.02 TeV pointing to a system size independent behaviour.
104 - Yicheng Feng , Yufu Lin , Jie Zhao 2021
Isobaric $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr collisions at $sqrt{s_{_{NN}}}=200$ GeV have been conducted at the Relativistic Heavy Ion Collider to circumvent the large flow-induced background in searching for the chiral ma gnetic effect (CME), predicted by the topological feature of quantum chromodynamics (QCD). Considering that the background in isobar collisions is approximately twice that in Au+Au collisions (due to the smaller multiplicity) and the CME signal is approximately half (due to the weaker magnetic field), we caution that the CME may not be detectable with the collected isobar data statistics, within $sim$2$sigma$ significance, if the axial charge per entropy density ($n_5/s$) and the QCD vacuum transition probability are system independent. This expectation is generally verified by the Anomalous-Viscous Fluid Dynamics (AVFD) model. While our estimate provides an approximate experimental baseline, theoretical uncertainties on the CME remain large.
The recent net-proton fluctuation results of the STAR (Solenoidal Tracker At RHIC) experiment from beam energy scan (BES) program at the BNL Relativistic Heavy Ion Collider (RHIC) have drawn much attention to exploring the QCD critical point and the nature of deconfinement phase transition. There has been much speculation that the non-monotonic behavior of $kappasigma^{2}$ of the produced protons around $sqrt{s_{rm NN}}$ = 19.6 GeV in the STAR results may be due to the existence of QCD critical point. However, the experimentally measured proton distributions contain protons from heavy resonance decays, from baryon stopping and from direct production processes. These proton distributions are used to estimate the net-proton number fluctuation. Because it is difficult to disentangle the protons from the above-mentioned sources, it is better to devise a method which will account for the directly produced baryons (protons) to study the dynamical fluctuation at different center-of-mass energies. This is because, it is assumed that any associated criticality in the system could affect the particle production mechanism and hence the dynamical fluctuation in various conserved numbers. In the present work, we demonstrate a method to estimate the number of stopped protons at RHIC BES energies for central $0-5%$ auau collisions within STAR acceptance and discuss its implications on the net-proton fluctuation results.
We study the fluctuations of net-charge, net-pion, net-kaon and net-proton using $D$-measure and $ u_{dyn}$ variables in heavy-ion jet interaction generator (HIJING), ultra-relativistic quantum molecular dynamics (UrQMD), and hadron resonance gas (HR G) model at different collision energies sqsn. It has been observed that, the values of $D$ strongly dependent on $Delta eta$ in HIJING and UrQMD models and independent in HRG model. The diffusion coefficients ($sigma$) of identified particles are estimated at various sqsn. It is observed that, the $sigma$ values are independent of collision energies but emphasizes the particle species dependence of diffusion coefficient in the QGP medium. This study provides a realistic baseline for comparison with the experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا