ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular Gas in the z=1.2 Ultraluminous Merger GOODS J123634.53+621241.3

178   0   0.0 ( 0 )
 نشر من قبل David T. Frayer
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of CO(2-1) emission from the z=1.2 ultraluminous infrared galaxy (ULIRG) GOODS J123634.53+621241.3 (also known as the sub-millimeter galaxy GN26). These observations represent the first discovery of high-redshift CO emission using the new Combined Array for Research in Millimeter-Wave Astronomy (CARMA). Of all high-redshift (z>1) galaxies within the GOODS-North field, this source has the largest far-infrared (FIR) flux observed in the Spitzer 70um and 160um bands. The CO redshift confirms the optical identification of the source, and the bright CO(2-1) line suggests the presence of a large molecular gas reservoir of about 7x10^10 M(sun). The infrared-to-CO luminosity ratio of L(IR)/L(CO) = 80+/-30 L(sun) (K Km/s pc^2)^-1 is slightly smaller than the average ratio found in local ULIRGs and high-redshift sub-millimeter galaxies. The short star-formation time scale of about 70 Myr is consistent with a starburst associated with the merger event and is much shorter than the time scales for spiral galaxies and estimates made for high-redshift galaxies selected on the basis of their B-z and z-K colors.


قيم البحث

اقرأ أيضاً

We study the molecular gas properties of two star-forming galaxies separated by 6 kpc in the projected space and belonging to a galaxy cluster selected from the Irac Shallow Cluster Survey, at a redshift $z=1.2$, i.e., $sim2$ Gyr after the cosmic sta r formation density peak. This work describes the first CO detection from $1<z<1.4$ star forming cluster galaxies with no reported clear evidence of AGN. We exploit observations taken with the NOEMA interferometer at $sim3$ mm to detect CO(2-1) line emission from the two selected galaxies, unresolved by our observations. Based on the CO(2-1) spectrum we estimate a total molecular gas mass $M({rm H_2})=(2.2^{+0.5}_{-0.4})times10^{10}$ $M_odot$ and dust mass $M_{rm dust}<4.2times10^8~M_odot$ for the two blended sources. The two galaxies have similar stellar masses and a large relative velocity of $sim$400 km/s estimated from the CO(2-1) line width. These findings tend to privilege a scenario where both sources contribute to the observed CO(2-1). By using the archival Spitzer MIPS flux at 24$mu$m we estimate an ${rm SFR(24mu m)}=(28^{+12}_{-8})~M_odot$/yr for each of the two galaxies. Assuming that the two sources equally contribute to the observe CO(2-1) our analysis yields a depletion time scale $tau_{rm dep}=(3.9^{+1.4}_{-1.8})times10^8$ yr, and a molecular gas to stellar mass ratio $0.17pm0.13$ for each of two sources, separately. Our results are in overall agreement with those of other distant cluster galaxies. The two target galaxies have molecular gas mass and depletion time that are marginally compatible with, but smaller than those of main sequence field galaxies, suggesting that the molecular gas has not been refueled enough. Higher resolution and higher frequency observations will enable us to spatially resolve the two sources and possibly distinguish between different gas processing mechanisms.
290 - C. M. Casey 2009
[abridged] We present interferometric CO observations of twelve z~2 submillimetre-faint, star-forming radio galaxies (SFRGs) which are thought to be ultraluminous infrared galaxies (ULIRGs) possibly dominated by warmer dust (T_dust ~> 40 K) than subm illimetre galaxies (SMGs) of similar luminosities. Four other CO-observed SFRGs are included from the literature, and all observations are taken at the Plateau de Bure Interferometer (PdBI) in the compact configuration. Ten of the sixteen SFRGs observed in CO (63%) are detected at >4sigma with a mean inferred molecular gas mass of ~2*10^10 M_sun. SFRGs trend slightly above the local ULIRG L_FIR-L_CO relation. Since SFRGs are about two times fainter in radio luminosity but exhibit similar CO luminosities to SMGs, this suggests SFRGs are slightly more efficient star formers than SMGs at the same redshifts. SFRGs also have a narrow mean CO line width, 320+-80km/s. SFRGs bridge the gap between properties of very luminous >5*10^12 L_sun SMGs and those of local ULIRGs and are consistent with intermediate stage major mergers. We suspect that more moderate-luminosity SMGs, not yet surveyed in CO, would show similar molecular gas properties to SFRGs. The AGN fraction of SFRGs is consistent with SMGs and is estimated to be 0.3+-0.1, suggesting that SFRGs are observed near the peak phase of star formation activity and not in a later, post-SMG enhanced AGN phase. This CO survey of SFRGs serves as a pilot project for the much more extensive survey of Herschel and SCUBA-2 selected sources which only partially overlap with SMGs. Better constraints on CO properties of a diverse high-z ULIRG population are needed from ALMA to determine the evolutionary origin of extreme starbursts, and what role ULIRGs serve in catalyzing the formation of massive stellar systems in the early Universe.
52 - F. Ruppin , R. Adam , P. Ade 2019
We present the results of the analysis of the very massive cluster MOO J1142$+$1527 at a redshift $z = 1.2$ based on high angular resolution NIKA2 Sunyaev-Zeldovich (SZ) and $Chandra$ X-ray data. This multi-wavelength analysis enables us to estimate the shape of the temperature profile with unprecedented precision at this redshift and to obtain a map of the gas entropy distribution averaged along the line of sight. The comparison between the cluster morphological properties observed in the NIKA2 and $Chandra$ maps together with the analysis of the entropy map allows us to conclude that MOO J1142$+$1527 is an on-going merger hosting a cool-core at the position of the X-ray peak. This work demonstrates how the addition of spatially-resolved SZ observations to low signal-to-noise X-ray data can bring valuable insights on the intracluster medium thermodynamic properties at $z>1$.
We present the 3 mm wavelength spectra of 28 local galaxy merger remnants obtained with the Large Millimeter Telescope. Fifteen molecular lines from 13 different molecular species and isotopologues were identified, and 21 out of 28 sources were detec ted in one or more molecular lines. On average, the line ratios of the dense gas tracers, such as HCN (1-0) and HCO$^{+}$(1-0), to $^{13}$CO (1-0) are 3-4 times higher in ultra/luminous infrared galaxies (U/LIRGs) than in non-LIRGs in our sample. These high line ratios could be explained by the deficiency of $^{13}$CO and high dense gas fractions suggested by high HCN (1-0)/$^{12}$CO (1-0) ratios. We calculate the IR-to-HCN (1-0) luminosity ratio as a proxy of the dense gas star formation efficiency. There is no correlation between the IR/HCN ratio and the IR luminosity, while the IR/HCN ratio varies from source to source (1.1-6.5) $times 10^{3}$ $L_{odot}$/(K km s$^{-1}$ pc$^{2}$). Compared with the control sample, we find that the average IR/HCN ratio of the merger remnants is higher by a factor of 2-3 than those of the early/mid-stage mergers and non-merging LIRGs, and it is comparable to that of the late-stage mergers. The IR-to-$^{12}$CO (1-0) ratios show a similar trend to the IR/HCN ratios. These results suggest that star formation efficiency is enhanced by the merging process and maintained at high levels even after the final coalescence. The dynamical interactions and mergers could change the star formation mode and continue to impact the star formation properties of the gas in the post-merger phase.
We present < 1 kpc resolution CO imaging study of 37 optically-selected local merger remnants using new and archival interferometric maps obtained with ALMA, CARMA, SMA and PdBI. We supplement a sub-sample with single-dish measurements obtained at th e NRO 45 m telescope for estimating the molecular gas mass (10^7 - 10^11 M_sun), and evaluating the missing flux of the interferometric measurements. Among the sources with robust CO detections, we find that 80 % (24/30) of the sample show kinematical signatures of rotating molecular gas disks (including nuclear rings) in their velocity fields, and the sizes of these disks vary significantly from 1.1 kpc to 9.3 kpc. The size of the molecular gas disks in 54 % of the sources is more compact than the K-band effective radius. These small gas disks may have formed from a past gas inflow that was triggered by a dynamical instability during a potential merging event. On the other hand, the rest (46 %) of the sources have gas disks which are extended relative to the stellar component, possibly forming a late-type galaxy with a central stellar bulge. Our new compilation of observational data suggests that nuclear and extended molecular gas disks are common in the final stages of mergers. This finding is consistent with recent major-merger simulations of gas rich progenitor disks. Finally, we suggest that some of the rotation-supported turbulent disks observed at high redshifts may result from galaxies that have experienced a recent major merger.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا