ﻻ يوجد ملخص باللغة العربية
Let $alpha$ be a quadratic Poisson bivector on a vector space $V$. Then one can also consider $alpha$ as a quadratic Poisson bivector on the vector space $V^*[1]$. Fixed a universal deformation quantization (prediction some weights to all Kontsevich graphs [K97]), we have deformation quantization of the both algebras $S(V^*)$ and $Lambda(V)$. These are graded quadratic algebras, and therefore Koszul algebras. We prove that for some universal deformation quantization, independent on $alpha$, these two algebras are Koszul dual. We characterize some deformation quantizations for which this theorem is true in the framework of the Tamarkins theory [T1].
Let $alpha$ be a polynomial Poisson bivector on a finite-dimensional vector space $V$ over $mathbb{C}$. Then Kontsevich [K97] gives a formula for a quantization $fstar g$ of the algebra $S(V)^*$. We give a construction of an algebra with the PBW prop
In this paper we provide a quantization via formality of Poisson actions of a triangular Lie algebra $(mathfrak g,r)$ on a smooth manifold $M$. Using the formality of polydifferential operators on Lie algebroids we obtain a deformation quantization o
We show that Verdier duality for certain sheaves on the moduli spaces of graphs associated to Koszul operads corresponds to Koszul duality of operads. This in particular gives a conceptual explanation of the appearance of graph cohomology of both the
This paper is based on the authors paper Koszul duality in deformation quantization, I, with some improvements. In particular, an Introduction is added, and the convergence of the spectral sequence in Lemma 2.1 is rigorously proven. Some informal discussion in Section 1.5 is added.
In this review an overview on some recent developments in deformation quantization is given. After a general historical overview we motivate the basic definitions of star products and their equivalences both from a mathematical and a physical point o