ﻻ يوجد ملخص باللغة العربية
Using the action of the Galois group of a normal extension of number fields, we generalize and symmetrize various fundamental statements in algebra and algebraic number theory concerning splitting types of prime ideals, factorization types of polynomials modulo primes, and cycle types of the Galois groups of polynomials. One remarkable example is the removal of all artificial constraints from the Kummer-Dedekind Theorem that relates splitting and factorization patterns. Finally, we present an elementary proof that the discriminant of the splitting field of a monic irreducible polynomial with integer coefficients has a computable upper bound in terms of the coefficients. This result, combined with one of Lagarias et al., shows that tests of polynomials for the cycle types of the Galois group are conclusive. In particular, the Galois groups of monic irreducible cubics, quartics, and quintics with integer coefficients can be completely determined in finitely many steps (though not necessarily in ones lifetime).
Let $ksubseteq K$ be a finite Galois extension of fields with Galois group $G$. Let $mathscr{G}$ be the automorphism $k$-group scheme of $K$. We construct a canonical $k$-subgroup scheme $underline{G}subsetmathscr{G}$ with the property that $Spec_k(K
Let $X$ be a smooth projective connected curve of genus $gge 2$ defined over an algebraically closed field $k$ of characteristic $p>0$. Let $G$ be a finite group, $P$ a Sylow $p$-subgroup of $G$ and $N_G(P)$ its normalizer in $G$. We show that if the
For positive integers $n$, the truncated binomial expansions of $(1+x)^n$ which consist of all the terms of degree $le r$ where $1 le r le n-2$ appear always to be irreducible. For fixed $r$ and $n$ sufficiently large, this is known to be the case. W
In this paper we show an explicit polynomial in Q[x] that has Galois group SL2(F16), filling in a gap in the tables of Juergen Klueners and Gunther Malle. The computation of this polynomial uses modular forms and their Galois representations.
The arboreal Galois group of a polynomial $f$ over a field $K$ encodes the action of Galois on the iterated preimages of a root point $x_0in K$, analogous to the action of Galois on the $ell$-power torsion of an abelian variety. We compute the arbore