ترغب بنشر مسار تعليمي؟ اضغط هنا

Sparse Spike Coding : applications of Neuroscience to the processing of natural images

138   0   0.0 ( 0 )
 نشر من قبل Laurent Perrinet
 تاريخ النشر 2009
  مجال البحث علم الأحياء
والبحث باللغة English
 تأليف Laurent Perrinet




اسأل ChatGPT حول البحث

If modern computers are sometimes superior to humans in some specialized tasks such as playing chess or browsing a large database, they cant beat the efficiency of biological vision for such simple tasks as recognizing and following an object in a complex cluttered background. We present in this paper our attempt at outlining the dynamical, parallel and event-based representation for vision in the architecture of the central nervous system. We will illustrate this on static natural images by showing that in a signal matching framework, a L/LN (linear/non-linear) cascade may efficiently transform a sensory signal into a neural spiking signal and we will apply this framework to a model retina. However, this code gets redundant when using an over-complete basis as is necessary for modeling the primary visual cortex: we therefore optimize the efficiency cost by increasing the sparseness of the code. This is implemented by propagating and canceling redundant information using lateral interactions. We compare the efficiency of this representation in terms of compression as the reconstruction quality as a function of the coding length. This will correspond to a modification of the Matching Pursuit algorithm where the ArgMax function is optimized for competition, or Competition Optimized Matching Pursuit (COMP). We will in particular focus on bridging neuroscience and image processing and on the advantages of such an interdisciplinary approach.



قيم البحث

اقرأ أيضاً

The role of synchronous firing in sensory coding and cognition remains controversial. While studies, focusing on its mechanistic consequences in attentional tasks, suggest that synchronization dynamically boosts sensory processing, others failed to f ind significant synchronization levels in such tasks. We attempt to understand both lines of evidence within a coherent theoretical framework. We conceptualize synchronization as an independent control parameter to study how the postsynaptic neuron transmits the average firing activity of a presynaptic population, in the presence of synchronization. We apply the Berger-Levy theory of energy efficient information transmission to interpret simulations of a Hodgkin-Huxley-type postsynaptic neuron model, where we varied the firing rate and synchronization level in the presynaptic population independently. We find that for a fixed presynaptic firing rate the simulated postsynaptic interspike interval distribution depends on the synchronization level and is well-described by a generalized extreme value distribution. For synchronization levels of 15% to 50%, we find that the optimal distribution of presynaptic firing rate, maximizing the mutual information per unit cost, is maximized at ~30% synchronization level. These results suggest that the statistics and energy efficiency of neuronal communication channels, through which the input rate is communicated, can be dynamically adapted by the synchronization level.
74 - Cesar Ravello 2016
Natural images follow statistics inherited by the structure of our physical (visual) environment. In particular, a prominent facet of this structure is that images can be described by a relatively sparse number of features. To investigate the role of this sparseness in the efficiency of the neural code, we designed a new class of random textured stimuli with a controlled sparseness value inspired by measurements of natural images. Then, we tested the impact of this sparseness parameter on the firing pattern observed in a population of retinal ganglion cells recorded ex vivo in the retina of a rodent, the Octodon degus. These recordings showed in particular that the reliability of spike timings varies with respect to the sparseness with globally a similar trend than the distribution of sparseness statistics observed in natural images. These results suggest that the code represented in the spike pattern of ganglion cells may adapt to this aspect of the statistics of natural images.
Natural images follow statistics inherited by the structure of our physical (visual) environment. In particular, a prominent facet of this structure is that images can be described by a relatively sparse number of features. We designed a sparse codin g algorithm biologically-inspired by the architecture of the primary visual cortex. We show here that coefficients of this representation exhibit a heavy-tailed distribution. For each image, the parameters of this distribution characterize sparseness and vary from image to image. To investigate the role of this sparseness, we designed a new class of random textured stimuli with a controlled sparseness value inspired by our measurements on natural images. Then, we provide with a method to synthesize random textures images with a given statistics for sparseness that matches that of some given class of natural images and provide perspectives for their use in neurophysiology.
Within computational neuroscience, informal interactions with modelers often reveal wildly divergent goals. In this opinion piece, we explicitly address the diversity of goals that motivate and ultimately influence modeling efforts. We argue that a w ide range of goals can be meaningfully taken to be of highest importance. A simple informal survey conducted on the Internet confirmed the diversity of goals in the community. However, different priorities or preferences of individual researchers can lead to divergent model evaluation criteria. We propose that many disagreements in evaluating the merit of computational research stem from differences in goals and not from the mechanics of constructing, describing, and validating models. We suggest that authors state explicitly their goals when proposing models so that others can judge the quality of the research with respect to its stated goals.
Progress in natural language processing (NLP) models that estimate representations of word sequences has recently been leveraged to improve the understanding of language processing in the brain. However, these models have not been specifically design ed to capture the way the brain represents language meaning. We hypothesize that fine-tuning these models to predict recordings of brain activity of people reading text will lead to representations that encode more brain-activity-relevant language information. We demonstrate that a version of BERT, a recently introduced and powerful language model, can improve the prediction of brain activity after fine-tuning. We show that the relationship between language and brain activity learned by BERT during this fine-tuning transfers across multiple participants. We also show that, for some participants, the fine-tuned representations learned from both magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) are better for predicting fMRI than the representations learned from fMRI alone, indicating that the learned representations capture brain-activity-relevant information that is not simply an artifact of the modality. While changes to language representations help the model predict brain activity, they also do not harm the models ability to perform downstream NLP tasks. Our findings are notable for research on language understanding in the brain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا