ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Inhibition of Linear Absorption in Opaque Materials Using Phase-Locked Harmonic Generation

39   0   0.0 ( 0 )
 نشر من قبل Michael Scalora
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically predict and experimentally demonstrate inhibition of linear absorption for phase and group velocity mismatched second and third harmonic generation in strongly absorbing materials, GaAs in particular, at frequencies above the absorption edge. A 100-fs pump pulse tuned to 1300nm generates 650nm and 435nm second and third harmonic pulses that propagate across a 450 micron-thick GaAs substrate without being absorbed. We attribute this to a phase-locking mechanism that causes the pump to trap the harmonics and to impress them with its dispersive properties.

قيم البحث

اقرأ أيضاً

Second and third harmonic generation in the opaque region of a GaAs wafer is experimentally observed both in transmission and reflection. These harmonic components can propagate through an opaque material as long as the pump is tuned to a region of t ransparency or semi-transparency, and correspond to the inhomogeneous solutions of Maxwells equations with nonlinear polarization sources. We show that measurement of the angular and polarization dependence of the observed harmonic components allows one to infer the different nonlinear mechanisms that trigger these processes, including bulk nonlinearity, magnetic Lorentz and surface contributions. Experimental results are compared with a detailed numerical model that takes into account these different effects.
We predict and experimentally observe the enhancement by three orders of magnitude of phase mismatched second and third harmonic generation in a GaAs cavity at 650nm and 433nm, respectively, well above the absorption edge. Phase locking between the p ump and the harmonics changes the effective dispersion of the medium and inhibits absorption. Despite hostile conditions the harmonics become localized inside the cavity leading to relatively large conversion efficiencies. Field localization plays a pivotal role and ushers in a new class of semiconductor-based devices in the visible and UV ranges.
Since the new millennium coherent extreme ultra-violet and soft x-ray radiation has revolutionized the understanding of dynamical physical, chemical and biological systems at the electrons natural timescale. Unfortunately, coherent laser-based upconv ersion of infrared photons to vacuum-ultraviolet and soft x-ray high-order harmonics in gaseous, liquid and solid targets is notoriously inefficient. In dense nonlinear media, the limiting factor is strong re-absorption of the generated high-energy photons. Here we overcome this limitation by allowing high-order harmonics generated from a periodic array of thin one-dimensional crystalline silicon ridge waveguides to propagate in the vacuum gaps between the ridges, thereby avoiding the high absorption loss of the bulk nonlinear material and resulting in a ~ 100-fold increase in propagation length. As the grating period is varied, each high-harmonic shows a different and marked modulation, indicating the onset of coherent addition which is otherwise suppressed in absorption-limited emission. By beating the absorption limit, our results pave the way for bright coherent short-wavelength sources and their implementation in nano-photonic devices.
Silica-based optical fibers are a workhorse of nonlinear optics. They have been used to demonstrate nonlinear phenomena such as solitons and self-phase modulation. Since the introduction of the photonic crystal fiber, they have found many exciting ap plications, such as supercontinuum white light sources and third-harmonic generation, among others. They stand out by their low loss, large interaction length, and the ability to engineer its dispersive properties, which compensate for the small chi(3) nonlinear coefficient. However, they have one fundamental limitation: due to the amorphous nature of silica, they do not exhibit second-order nonlinearity, except for minor contributions from surfaces. Here, we demonstrate significant second-harmonic generation in functionalized optical fibers with a monolayer of highly nonlinear MoS2 deposited on the fiber guiding core. The demonstration is carried out in a 3.5 mm short piece of exposed core fiber, which was functionalized in a scalable process CVD-based process, without a manual transfer step. This approach is scalable and can be generalized to other transition metal dichalcogenides and other waveguide systems. We achieve an enhancement of more than 1000x over a reference sample of equal length. Our simple proof-of-principle demonstration does not rely on either phase matching to fundamental modes, or ordered growth of monolayer crystals, suggesting that pathways for further improvement are within reach. Our results do not just demonstrate a new path towards efficient in-fiber SHG-sources, instead, they establish a platform with a new route to chi(2)-based nonlinear fiber optics, optoelectronics, and photonics platforms, integrated optical architectures, and active fiber networks.
High harmonic generation (HHG) is an extreme nonlinear frequency up-conversion process during which extremely short duration optical pulses at very short wavelengths are emitted. A major concern of HHG is the small conversion efficiency at the single emitter level. Thus ensuring that the emission at different locations are emitted in phase is crucial. At high pump intensities it is impossible to phase match the radiation without reverting to ordered modulations of either the medium or the pump field itself, a technique known as Quasi-Phase-Matching (QPM). To date, demonstrated QPM techniques of HHG were usually complicated and/or lacked tunability. Here we demonstrate experimentally a relatively simple, highly and easily tunable QPM technique by using a structured pump beam made of the interference of different spatial optical modes. With this technique we demonstrate on-the-fly, tunable quasi-phase-matching of harmonic orders 25 to 39 with up to 30 fold enhancement of the emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا