ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant Magnetoelectric Effect via Strain-Induced Spin-Reorientation Transitions in Ferromagnetic Films

150   0   0.0 ( 0 )
 نشر من قبل Nicholas A. Pertsev
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. A. Pertsev




اسأل ChatGPT حول البحث

It is shown theoretically that a giant magnetoelectric susceptibility exceeding 10^-6 s/m may be achieved in the ferromagnetic/ferroelectric epitaxial systems via the magnetization rotation induced by an electric field applied to the substrate. The predicted magnetoelectric anomaly results from the strain-driven spin-reorientation transitions in ferromagnetic films, which take place at experimentally accessible misfit strains in CoFe2O4 and Ni films.



قيم البحث

اقرأ أيضاً

We show that misfit strain originated from the film-substrate lattice mismatch strongly increases the value of the quadratic magnetoelectric coupling. The giant magnetoelectric coupling, size effects and misfit strain cause strong changes of ferroic films phase diagrams at zero external magnetic and electric fields, in particular, the transformation of antiferromagnetic phase into ferromagnetic or ferrimagnetic ones for compressive or tensile misfit strains correspondingly as well as thickness induced paramagnetic or/and paraelectric phases appearance. Ferromagnetism appearance and magnetoelectric coupling increase in thin ferroelectric-antiferromagnetic films is in agreement with available experimental data and opens the way for tailoring of ferroic films magnetic and electric properties.
Anisotropic magnetoresistance (AMR) of Cr2Ge2Te6 (CGT), a layered ferromagnetic insulator, is investigated under an applied hydrostatic pressure up to 2 GPa. The easy axis direction of the magnetization is inferred from the AMR saturation feature in the presence and absence of the applied pressure. At zero applied pressure, the easy axis is along the c-direction or perpendicular to the layer. Upon application of a hydrostatic pressure>1 GPa, the uniaxial anisotropy switches to easy-plane anisotropy which drives the equilibrium magnetization from the c-axis to the ab-plane at zero magnetic field, which amounts to a giant magnetic anisotropy energy change (>100%). As the temperature is increased across the Curie temperature, the characteristic AMR effect gradually decreases and disappears. Our first-principles calculations confirm the giant magnetic anisotropy energy change with moderate pressure and assign its origin to the increased off-site spin-orbit interaction of Te atoms due to a shorter Cr-Te distance. Such a pressure-induced spin reorientation transition is very rare in three-dimensional ferromagnets, but it may be common to other layered ferromagnets with similar crystal structures to CGT, and therefore offers a unique way to control magnetic anisotropy.
We report the magnetic entropy change (Delta Sm) in magnetoelectric Eu1-xBaxTiO3 for x = 0.1- 0.9. We find - delta Sm = 11 (40) J/kg.K in x = 0.1 for a field change of 1 (5) Tesla respectively, which is the largest value among all Eu-based oxides. De lta Sm arises from the field-induced suppression of the spin entropy of Eu2+:4f7 localized moments. While -delta Sm decreases with increasing x, -DeltaSm = 6.58 J/kg.K observed in the high spin diluted composition x = 0.9 is larger than that in many manganites. Our results indicate that these magnetoelectrics are potential candidates for cryogenic magnetic refrigeration.
The magnetic-field-dependent spin ordering of strained BiFeO3 films is determined using nuclear resonant scattering and Raman spectroscopy. The critical field required to destroy the cycloidal modulation of the Fe spins is found to be significantly l ower than in the bulk, with appealing implications for field-controlled spintronic and magnonic devices.
We report the discovery of a metamagnetic phase transition in a polar antiferromagnet Ni$_3$TeO$_6$ that occurs at 52 T. The new phase transition accompanies a colossal magnetoelectric effect, with a magnetic-field-induced polarization change of 0.3 $mu$C/cm$^2$, a value that is 4 times larger than for the spin-flop transition at 9 T in the same material, and also comparable to the largest magnetically-induced polarization changes observed to date. Via density-functional calculations we construct a full microscopic model that describes the data. We model the spin structures in all fields and clarify the physics behind the 52 T transition. The high-field transition involves a competition between multiple different exchange interactions which drives the polarization change through the exchange-striction mechanism. The resultant spin structure is rather counter-intuitive and complex, thus providing new insights on design principles for materials with strong magnetoelectric coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا