ترغب بنشر مسار تعليمي؟ اضغط هنا

Renormalization group flow for fermionic superfluids at zero temperature

133   0   0.0 ( 0 )
 نشر من قبل Philipp Strack
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comprehensive analysis of quantum fluctuation effects in the superfluid ground state of an attractively interacting Fermi system, employing the attractive Hubbard model as a prototype. The superfluid order parameter, and fluctuations thereof, are implemented by a bosonic Hubbard-Stratonovich field, which splits into two components corresponding to longitudinal and transverse (Goldstone) fluctuations. Physical properties of the system are computed from a set of approximate flow equations obtained by truncating the exact functional renormalization group flow of the coupled fermion-boson action. The equations capture the influence of fluctuations on non-universal quantities such as the fermionic gap, as well as the universal infrared asymptotics present in every fermionic superfluid. We solve the flow equations numerically in two dimensions and compute the asymptotic behavior analytically in two and three dimensions. The fermionic gap Delta is reduced significantly compared to the mean-field gap, and the bosonic order parameter alpha, which is equivalent to Delta in mean-field theory, is suppressed to values below Delta by fluctuations. The fermion-boson vertex is only slightly renormalized. In the infrared regime, transverse order parameter fluctuations associated with the Goldstone mode lead to a strong renormalization of longitudinal fluctuations: the longitudinal mass and the bosonic self-interaction vanish linearly as a function of the scale in two dimensions, and logarithmically in three dimensions, in agreement with the exact behavior of an interacting Bose gas.



قيم البحث

اقرأ أيضاً

We extend the Hertz-Millis theory of quantum phase transitions in itinerant electron systems to phases with broken discrete symmetry. Using a set of coupled flow equations derived within the functional renormalization group framework, we compute the second order phase transition line T_c(delta), with delta a non-thermal control parameter, near a quantum critical point. We analyze the interplay and relative importance of quantum and classical fluctuations at different energy scales, and we compare the Ginzburg temperature T_G to the transition temperature T_c, the latter being associated with a non-Gaussian fixed-point.
We compare two fermionic renormalization group methods which have been used to investigate the electronic transport properties of one-dimensional metals with two-particle interaction (Luttinger liquids) and local inhomogeneities. The first one is a p oor mans method setup to resum ``leading-log divergences of the effective transmission at the Fermi momentum. Generically the resulting equations can be solved analytically. The second approach is based on the functional renormalization group method and leads to a set of differential equations which can only for certain setups and in limiting cases be solved analytically, while in general it must be integrated numerically. Both methods are claimed to be applicable for inhomogeneities of arbitrary strength and to capture effects of the two-particle interaction, such as interaction dependent exponents, up to leading order. We critically review this for the simplest case of a single impurity. While on first glance the poor mans approach seems to describe the crossover from the ``perfect to the ``open chain fixed point we collect evidence that difficulties may arise close to the ``perfect chain fixed point. Due to a subtle relation between the scaling dimensions of the two fixed points this becomes apparent only in a detailed analysis. In the functional renormalization group method the coupling of the different scattering channels is kept which leads to a better description of the underlying physics.
As new kinds of stabilizer code models, fracton models have been promising in realizing quantum memory or quantum hard drives. However, it has been shown that the fracton topological order of 3D fracton models occurs only at zero temperature. In this Letter, we show that higher dimensional fracton models can support a fracton topological order below a nonzero critical temperature $T_c$. Focusing on a typical 4D X-cube model, we show that there is a finite critical temperature $T_c$ by analyzing its free energy from duality. We also obtained the expectation value of the t Hooft loops in the 4D X-cube model, which directly shows a confinement-deconfinement phase transition at finite temperature. This finite-temperature phase transition can be understood as spontaneously breaking the $mathbb{Z}_2$ one-form subsystem symmetry. Moreover, we propose a new no-go theorem for finite-temperature quantum fracton topological order.
The key idea behind the renormalization group (RG) transformation is that properties of physical systems with very different microscopic makeups can be characterized by a few universal parameters. However, finding the optimal RG transformation remain s difficult due to the many possible choices of the weight factors in the RG procedure. Here we show, by identifying the conditional distribution in the restricted Boltzmann machine (RBM) and the weight factor distribution in the RG procedure, an optimal real-space RG transformation can be learned without prior knowledge of the physical system. This neural Monte Carlo RG algorithm allows for direct computation of the RG flow and critical exponents. This scheme naturally generates a transformation that maximizes the real-space mutual information between the coarse-grained region and the environment. Our results establish a solid connection between the RG transformation in physics and the deep architecture in machine learning, paving the way to further interdisciplinary research.
The low temperature thermodynamics of correlated 1D fermionic models with spin and charge degrees of freedom is obtained by exact diagonalization (ED) of small systems and followed by density matrix renormalization group (DMRG) calculations that targ et the lowest hundreds of states ${E(N)}$ at system size $N$ instead of the ground state. Progressively larger $N$ reaches $T < 0.05t$ in correlated models with electron transfer $t$ between first neighbors and bandwidth $4t$. The size dependence of the many-fermion basis is explicitly included for arbitrary interactions by scaling the partition function. The remaining size dependence is then entirely due to the energy spectrum ${E(N)}$ of the model. The ED/DMRG method is applied to Hubbard and extended Hubbard models, both gapped and gapless, with $N_e = N$ or $N/2$ electrons and is validated against exact results for the magnetic susceptibility $chi(T)$ and entropy $S(T)$ per site. Some limitations of the method are noted. Special attention is given to the bond-order-wave phase of the extended Hubbard model with competing interactions and low $T$ thermodynamics sensitive to small gaps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا