ترغب بنشر مسار تعليمي؟ اضغط هنا

The Milky Way Tomography with SDSS: II. Stellar Metallicity

399   0   0.0 ( 0 )
 نشر من قبل Branimir Sesar
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using effective temperature and metallicity derived from SDSS spectra for ~60,000 F and G type main sequence stars (0.2<g-r<0.6), we develop polynomial models for estimating these parameters from the SDSS u-g and g-r colors. We apply this method to SDSS photometric data for about 2 million F/G stars and measure the unbiased metallicity distribution for a complete volume-limited sample of stars at distances between 500 pc and 8 kpc. The metallicity distribution can be exquisitely modeled using two components with a spatially varying number ratio, that correspond to disk and halo. The two components also possess the kinematics expected for disk and halo stars. The metallicity of the halo component is spatially invariant, while the median disk metallicity smoothly decreases with distance from the Galactic plane from -0.6 at 500 pc to -0.8 beyond several kpc. The absence of a correlation between metallicity and kinematics for disk stars is in a conflict with the traditional decomposition in terms of thin and thick disks. We detect coherent substructures in the kinematics--metallicity space, such as the Monoceros stream, which rotates faster than the LSR, and has a median metallicity of [Fe/H]=-0.96, with an rms scatter of only ~0.15 dex. We extrapolate our results to the performance expected from the Large Synoptic Survey Telescope (LSST) and estimate that the LSST will obtain metallicity measurements accurate to 0.2 dex or better, with proper motion measurements accurate to ~0.2 mas/yr, for about 200 million F/G dwarf stars within a distance limit of ~100 kpc (g<23.5). [abridged]

قيم البحث

اقرأ أيضاً

Abridged: We estimate the distances to ~48 million stars detected by the Sloan Digital Sky Survey and map their 3D number density distribution in 100 < D < 20 kpc range over 6,500 deg^2 of sky. The data show strong evidence for a Galaxy consisting of an oblate halo, a disk component, and a number of localized overdensities with exponential disk parameters (bias-corrected for an assumed 35% binary fraction) H_1 = 300 pc, L_1 = 2600 pc, H_2 = 900 pc, L_2 = 3600 pc, and local density normalization of 12%. We find the halo to be oblate, with best-fit axis ratio c/a = 0.64, r^{-2.8} profile, and the local halo-to-thin disk normalization of 0.5%. We estimate the errors of derived model parameters to be no larger than ~20% (disk scales) and ~10% (thick disk normalization). While generally consistent with the above model, the density distribution shows a number of statistically significant localized deviations. We detect two overdensities in the thick disk region at (R, Z) ~ (6.5, 1.5)kpc and (R, Z) ~ (9.5, 0.8) kpc, and a remarkable density enhancement in the halo covering >1000deg^2 of sky towards the constellation of Virgo, at distances of ~6-20 kpc. Compared to a region symmetric with respect to the l=0 line, the Virgo overdensity is responsible for a factor of 2 number density excess and may be a nearby tidal stream or a low-surface brightness dwarf galaxy merging with the Milky Way. After removal of the resolved overdensities, the remaining data are consistent with a smooth density distribution; we detect no evidence of further unresolved clumpy substructure at scales ranging from ~50pc in the disk, to ~1 - 2 kpc in the halo.
We apply the spectroscopy-based stellar-color regression (SCR) method to perform an accurate photometric re-calibration of the second data release from the SkyMapper Southern Survey (SMSS DR2). From comparison with a sample of over 200,000 dwarf star s with stellar atmospheric parameters taken from GALAH+ DR3 and with accurate, homogeneous photometry from $Gaia$ DR2, zero-point offsets are detected in the original photometric catalog of SMSS DR2, in particular for the gravity- and metallicity-sensitive $uv$ bands. For $uv$ bands, the zero-point offsets are close to zero at very low extinction, and then steadily increase with $E (B - V)$, reaching as large as 0.174 and 0.134 mag respectively, at $E (B - V) sim 0.5$ mag. These offsets largely arise from the adopted dust term in the transformations used by SMSS DR2 to construct photometric calibrators from the ATLAS reference catalog. For the $gr$ bands, the zero-point offsets exhibit negligible variations with SFD $E(B - V )$, due to their tiny coefficients on the dust term in the transformation. Our study also reveals small, but significant, spatial variations of the zero-point offsets in all $uvgr$ bands. External checks using Stromgren photometry, WD loci and the SDSS Stripe 82 standard-star catalog independently confirm the zero-points found by our revised SCR method.
We use SDSS photometry of 73 million stars to simultaneously obtain best-fit main-sequence stellar energy distribution (SED) and amount of dust extinction along the line of sight towards each star. Using a subsample of 23 million stars with 2MASS pho tometry, whose addition enables more robust results, we show that SDSS photometry alone is sufficient to break degeneracies between intrinsic stellar color and dust amount when the shape of extinction curve is fixed. When using both SDSS and 2MASS photometry, the ratio of the total to selective absorption, $R_V$, can be determined with an uncertainty of about 0.1 for most stars in high-extinction regions. These fits enable detailed studies of the dust properties and its spatial distribution, and of the stellar spatial distribution at low Galactic latitudes. Our results are in good agreement with the extinction normalization given by the Schlegel et al. (1998, SFD) dust maps at high northern Galactic latitudes, but indicate that the SFD extinction map appears to be consistently overestimated by about 20% in the southern sky, in agreement with Schlafly et al. (2010). The constraints on the shape of the dust extinction curve across the SDSS and 2MASS bandpasses support the models by Fitzpatrick (1999) and Cardelli et al. (1989). For the latter, we find an $R_V=3.0pm0.1$(random) $pm0.1$(systematic) over most of the high-latitude sky. At low Galactic latitudes (|b|<5), we demonstrate that the SFD map cannot be reliably used to correct for extinction as most stars are embedded in dust, rather than behind it. We introduce a method for efficient selection of candidate red giant stars in the disk, dubbed dusty parallax relation, which utilizes a correlation between distance and the extinction along the line of sight. We make these best-fit parameters, as well as all the input SDSS and 2MASS data, publicly available in a user-friendly format.
93 - Moran Xia , Qingjuan Yu 2019
Observations and semianalytical galaxy formation and evolution models (SAMs) have suggested the existence of a stellar mass-stellar metallicity relation (MZR), which is shown to be universal for different types of galaxies over a large range of stell ar masses ($M_*sim 10^3$-$10^{11}M_odot$) and dark matter (DM) halo masses ($M_{rm halo}sim 10^9$-$10^{15}h^{-1}M_odot$). In this work, we construct a chemical evolution model to investigate the origin of the MZR, including both the effects of gas inflows and outflows in galaxies. We solve the MZR from the chemical evolution model, by assuming that the cold gas mass ($M_{rm cold}$) and the stellar feedback efficiency ($beta$) follow some power-law scaling relationships with $M_*$ during the growth of a galaxy, i.e., $M_{rm cold}propto M_*^{alpha_{rm gs}}$ and $betapropto M_*^{alpha_{beta{rm s}}}$. We use the SAM to obtain these power-law scaling relations, which appear to be roughly universal over a large range of stellar masses for both satellites and central galaxies within a large range of halo masses. The range of the MZRs produced by our models is in a narrow space, which provides support to the universality of the MZRs. The formation of the MZR is a result caused jointly by that the cold gas fraction decreases with increasing $M_*$ and by that the stellar feedback efficiency decreases with increasing $M_*$ in the galaxy growth, and the exponent in the MZR is around $-alpha_{beta{rm s}}$ or $1-alpha_{rm gs}$. The MZR represents an average evolutional track for the stellar metallicity of a galaxy. The comparison of our model with some previous models for the origin of MZRs is also discussed.
The data obtained by the recent modern sky surveys enable detailed studies of the stellar distribution in the multi-dimensional space spanned by spatial coordinates, velocity and metallicity, from the solar neighborhood all the way out to the outer M ilky Way halo. While these results represent exciting observational breakthroughs, their interpretation is not simple. For example, traditional decomposition of the thin and thick disks predicts a strong correlation in metallicity and kinematics at $sim$1 kpc from the Galactic plane; however, recent SDSS--based work has demonstrated an absence of this correlation for disk stars. Instead, the variation of the metallicity and rotational velocity distributions can be modeled using non--Gaussian functions that retain their shapes and only shift as the distance from the mid--plane increases. To fully contextualize these recent observational results, a detailed comparison with sophisticated numerical models is necessary. Modern simulations have sufficient resolution and physical detail to study the formation of stellar disks and spheroids over a large baseline of masses and cosmic ages. We discuss preliminary comparisons of various observed maps and N--body model predictions and find them encouraging. In particular, the N--body disk models of Rov{s}kar et al. cite{Roskar 2008} reproduce a change of disk scale height reminiscent of thin/thick disk decomposition, as well as metallicity and rotational velocity gradients, while not inducing a correlation of the latter two quantities, in qualitative agreement with SDSS observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا