ترغب بنشر مسار تعليمي؟ اضغط هنا

Decay of an inhomogeneous state via resonant tunnelling

58   0   0.0 ( 0 )
 نشر من قبل Paul M. Saffin
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We recently investigated the nature of resonant tunnelling in standard scalar Quantum Field Theory, uncovering the conditions required for resonance. It was shown that whereas the homogeneous false vacuum may decay via bubble nucleation, it may not decay in a resonant fashion. The no-go theorem given there is circumvented in this study by considering an initial state other than the homogeneous false vacuum, and we confirm our mechanism by showing in an explicit model how resonant tunnelling occurs. Using this model we demonstrate how the tunnelling rate depends on the energy of specially constructed initial states, with these states corresponding to contracting spherical bubbles of some vacuum that evolve to a minimum radius and then tunnel to another vacuum, instead of the classical motion where the bubble would just start to expand.

قيم البحث

اقرأ أيضاً

Efficient quantum-state transfer is achieved in a uniformly coupled spin-1/2 chain, with open boundaries, by application of local magnetic fields on the second and last-but-one spins, respectively. These effective textit{barriers} induce appearance o f two eigenstates, bi-localized at the edges of the chain, which allow a high quality transfer also at relatively long distances. The same mechanism may be used to send an entire e-bit (e.g., an entangled qubit pair) from one to the other end of the chain.
189 - Jeremy Le Deunff 2012
Resonant tunnelling is studied numerically and analytically with the help of a three-well quantum one-dimensional time-independent model. The simplest cases are considered where the three-well potential is polynomial or piecewise constant.
We propose a scheme to teleport an entangled state of two $Lambda$-type three-level atoms via photons. The teleportation protocol involves the local redundant encoding protecting the initial entangled state and allowing for repeating the detection un til quantum information transfer is successful. We also show how to manipulate a state of many $Lambda$-type atoms trapped in a cavity.
Based on the definition of the apparent horizon in a general two-dimensional dilaton gravity theory, we analyze the tunnelling phenomenon of the apparent horizon by using Hamilton-Jacobi method. In this theory the definition of the horizon is very di fferent from those in higher-dimensional gravity theories. The spectrum of the radiation is obtained and the temperature of the radiation is read out from this spectrum and it satisfies the usual relationship with the surface gravity. Besides, the calculation with Parikhs null geodesic method for a simple example conforms to our result in general stationary cases.
49 - T. Tatsumi , T. Muto 2012
We discuss the cooling of hybrid stars by considering the neutrino emission from quark matter. As a current topic the appearance of various inhomogeneous chiral phases have been studied near the chiral transition. Here we consider the dual-chiral-den sity-wave (DCDW) specified by the spatially modulated quark condensates. Since the DCDW state can be represented as a chirally rotated state from the normal quark matter, the quark weak-current is accordingly transformed to have an additional phase factor which modifies the energy-momentum conservation at the vertex, and makes the quark direct Urca process possible. The direct evaluation of the neutrino emissivity shows that it is proportional to and the magnitude is comparable with the quark or pion cooling. Since the DCDW phase develops only in the limited density region, this novel mechanism may give an interesting scenario about cooling of hybrid stars that lower-mass stars should be cooler than higher-mass ones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا