ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on Guiding, Focusing, and Sensing on the Subwavelength Scale Using Metallic Wire Arrays

39   0   0.0 ( 0 )
 نشر من قبل Pavel Belov
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This is a comment on Guiding, Focusing, and Sensing on the Subwavelength Scale Using Metallic Wire Arrays by G. Shvets, S. Trendafilov, J. B. Pendry and A. Sarychev published in Phys. Rev. Lett. 99, 053903 (2007), which demonstrates that the endoscope proposed in the letter does not demonstrate satisfactory subwavelength imaging performance.

قيم البحث

اقرأ أيضاً

Micro-sized spheres can focus light into subwavelength spatial domains: a phenomena called photonic nanojet. Even though well studied in three-dimensional (3D) configurations, only a few attempts have been reported to observe similar phenomena in two -dimensional (2D) systems. This, however, is important to take advantage of photonic nanojets in integrated optical systems. Usually, surface plasmon polaritons are suggested for this purpose, but they suffer notoriously from the rather low propagation lengths due to intrinsic absorption. Here, we solve this problem and explore, theoretically, numerically, and experimentally, the use of Bloch surface waves sustained by a suitably structured all-dielectric media to enable subwavelength focusing in an integrated planar optical system. Since only a low index contrast can be achieved while relying on Bloch surface waves, we perceive a new functional element that allows a tight focusing and the observation of a photonic nanojet on top of the surface. We experimentally demonstrate a spot size of 0.66{lambda} in the effective medium. Our approach paves the way to 2D all-dielectric photonic chips for nano-particle manipulation in fluidic devices and sensing applications.
In this letter, we introduce stacked fishnet metamaterial for steering light in microwave region. We numerically demonstrate that optical Bloch oscillations and a focus of as small as one sixth of a wavelength can be achieved. The flexibility of vary ing geometrical parameters of the fishnet slabs provides an efficient way for tuning its local effective media parameters and opens the possibility for controlling light arbitrarily. The experiment verifies subwavelength-sized light focusing effect by scanning magnetic field at the surface of the sample directly.
Transmission spectra of metallic films or membranes perforated by arrays of subwavelength slits or holes have been widely interpreted as resonance absorption by surface plasmon polaritons (SPPs). Alternative interpretations involving evanescent waves diffracted on the surface have also been proposed. These two approaches lead to divergent predictions for some surface wave properties. Using far-field interferometry, we have carried out a series of measurements on elementary one-dimensional (1-D) subwavelength structures with the aim of testing key properties of the surface waves and comparing them to predictions of these two points of view.
Many advances in reflective metasurfaces have been made during the last few years, implementing efficient manipulations of wavefronts, especially for plane waves. Despite numerous solutions that have been developed throughout the years, a practical m ethod to obtain subwavelength focusing without the generation of additional undesired scattering is a challenge to this day. In this paper, we introduce and discuss lossless reflectors for focusing incident waves into a point. The solution is based on the so-called power flow-conformal surfaces that allow theoretically arbitrary shaping of reflected waves. The metamirror shape is adapted to the power flow of the sum of the incident and reflected waves, allowing a local description of the reflector surface based on the surface impedance. In particular, we present a study of two scenarios. First, we study the scenario when the field is emitted by a point source and focused at an image point (in the considered example, with the {lambda}/20 resolution). Second, we analyze a metasurface capable to focus the power of an illuminating plane wave. This work provides a feasible strategy for various applications, including detecting biological signals near the skin, sensitive power focusing for cancer therapy, and point-to-point power transfer.
Proposed all optical amplification scenario is based on the properties of light propagation in two coupled subwavelength metallic slab waveguides where for particular choice of waveguide parameters two propagating (symmetric) and non-propagating (ant isymmetric) eigenmodes coexist. For such a setup incident beams realize boundary conditions for forming a stationary state as a superposition of mentioned eigenmodes. It is shown both analytically and numerically that amplification rate in this completely linear mechanism diverges for small signal values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا