ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluctuation Effect in the pi-flux State for Undoped High-Temperature Superconductors

36   0   0.0 ( 0 )
 نشر من قبل Takao Morinari
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Morinari




اسأل ChatGPT حول البحث

The effect of fluctuations about the pi-flux mean field state for the undoped high-temperature superconductors is investigated. It is shown that fluctuations of the mean fields lead to a self-energy correction that doubles the band width of the fermion dispersion in the lowest order. The dynamical mass generation is associated with the self-energy effect due to the interaction mediated by the Lagrange multiplier field, which is introduced to impose the constraint on the fermions. A self-consistent picture about the mass generation and the prop- agation of the Lagrange multiplier field without damping is proposed. The antiferromagnetic long-range ordering is described without introducing an additional repulsive interaction. The theory suggests a natural framework to study spin disordered systems in which fermionic excitations are low-lying excitations.

قيم البحث

اقرأ أيضاً

A microscopic theory for electronic spectrum of the CuO2 plane within an effective p-d Hubbard model is proposed. Dyson equation for the single-electron Green function in terms of the Hubbard operators is derived which is solved self-consistently for the self-energy evaluated in the noncrossing approximation. Electron scattering on spin fluctuations induced by kinematic interaction is described by a dynamical spin susceptibility with a continuous spectrum. Doping and temperature dependence of electron dispersions, spectral functions, the Fermi surface and the coupling constant are studied in the hole doped case. At low doping, an arc-type Fermi surface and a pseudogap in the spectral function are observed.
By re-examining recently-published data from angle-resolved photoemission spectroscopy we demonstrate that, in the superconducting region of the phase diagram, the pseudogap ground state is an arc metal. This scenario is consistent with results from Raman spectroscopy, specific heat and NMR. In addition, we propose an explanation for the Fermi pockets inferred from quantum oscillations in terms of a pseudogapped bilayer Fermi surface.
101 - T. Morinari 2008
Assuming antiferromagnetic orbital correlations to model the pseudogap state in the underdoped high-temperature superconductors, we study how this correlation is distinguished from the d-wave superconductivity correlation with including the finite-ra nge antiferromagnetic correlation effect. In spite of the fact that both correlations have the same d-wave symmetry, the contributions from each correlation is clearly distinguished in the spectral weight and the density of states.
80 - J. Zhao , U. Chatterjee , D. Ai 2013
The energy gap for electronic excitations is one of the most important characteristics of the superconducting state, as it directly refects the pairing of electrons. In the copper-oxide high temperature superconductors (HTSCs), a strongly anisotropic energy gap, which vanishes along high symmetry directions, is a clear manifestation of the d-wave symmetry of the pairing. There is, however, a dramatic change in the form of the gap anisotropy with reduced carrier concentration (underdoping). Although the vanishing of the gap along the diagonal to the square Cu-O bond directions is robust, the doping dependence of the large gap along the Cu-O directions suggests that its origin might be different from pairing. It is thus tempting to associate the large gap with a second order parameter distinct from superconductivity. We use angle-resolved photoemission spectroscopy (ARPES) to show that the two-gap behavior, and the destruction of well defined electronic excitations, are not universal features of HTSCs, and depend sensitively on how the underdoped materials are prepared. Depending on cation substitution, underdoped samples either show two-gap behavior or not. In contrast, many other characteristics of HTSCs, such as the domelike dependence of Tc on doping, long-lived excitations along the diagonals to the Cu-O bonds, energy gap at the antinode (crossing of the underlying Fermi surface and the (pi, 0)-(pi, pi) line) decreasing monotonically with doping, while persisting above Tc (the pseudogap), are present in all samples, irrespective of whether they exhibit two-gap behavior or not. Our results imply that universal aspects of high Tc superconductivity are relatively insensitive to differences in the electronic states along the Cu-O bond directions.
We present a numerical study of the isotope effect on the angle resolved photoemission spectra (ARPES) in the undoped cuprates. By the systematic-error-free Diagrammatic Monte Carlo method, the Lehman spectral function of a single hole in the ttt-J m odel in the regime of intermediate and strong couplings to optical phonons is calculated for normal and isotope substituted systems. We found that the isotope effect is strongly energy-momentum dependent, and is anomalously enhanced in the intermediate coupling regime while it approaches to that of the localized hole model in the strong coupling regime. We predict the strengths of effect as well as the fine details of the ARPES lineshape change. Implications to the doped case are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا