ترغب بنشر مسار تعليمي؟ اضغط هنا

Conference Summary: The Cosmic Agitator - Magnetic Fields in the Galaxy

39   0   0.0 ( 0 )
 نشر من قبل Anuj Sarma
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a summary of the conference The Cosmic Agitator: Magnetic Fields in the Galaxy held in Lexington KY in 2008 Mar 26-29. The presentation draws primarily from material in the slides prepared for the Conference Summary by one of us (Carl Heiles). Interested readers may navigate to the conference web site given in the paper to view the posted presentations in detail.

قيم البحث

اقرأ أيضاً

57 - Patrick Koppenburg 2020
Some highlights from the 18$^{rm th}$ international conference on $B$ physics at frontier machines are presented, including first results from the full LHC Run 2 data and from early Belle II data.
86 - Johanna Stachel 2005
This paper gives highlights of the experimental results shown at this conference.
118 - J. Singal , J. Haider , M. Ajello 2017
We summarize the radio synchrotron background workshop that took place July 19-21, 2017 at the University of Richmond. This first scientific meeting dedicated to the topic was convened because current measurements of the diffuse radio monopole reveal a surface brightness that is several times higher than can be straightforwardly explained by known Galactic and extragalactic sources and processes, rendering it by far the least well understood photon background at present. It was the conclusion of a majority of the participants that the radio monopole level is at or near that reported by the ARCADE 2 experiment and inferred from several absolutely calibrated zero level lower frequency radio measurements, and unanimously agreed that the production of this level of surface brightness, if confirmed, represents a major outstanding question in astrophysics. The workshop reached a consensus on the next priorities for investigations of the radio synchrotron background.
We extend previous work modeling the Galactic magnetic field in the plane using synchrotron emission in total and polarised intensity. In this work, we include a more realistic treatment of the cosmic-ray electrons using the GALPROP propagation code optimized to match the existing high-energy data. This addition reduces the degeneracies in our previous analysis and when combined with an additional observed synchrotron frequency allows us to study the low-energy end of the cosmic-ray electron spectrum in a way that has not previously been done. For a pure diffusion propagation, we find a low-energy injection spectrum slightly harder than generally assumed; for J(E) propto E^{alpha}, we find {alpha} = -1.34 pm 0.12, implying a very sharp break with the spectrum above a few GeV. This then predicts a synchrotron brightness temperature spectral index, {beta}, on the Galactic plane that is -2.8 < {beta} < -2.74 below a few GHz and -2.98 < {beta} < -2.91 up to 23 GHz. We find that models including cosmic-ray re-acceleration processes appear to be incompatible with the synchrotron data.
Angular momentum (AM) is a key parameter to understand galaxy formation and evolution. AM originates in tidal torques between proto-structures at turn around, and from this the specific AM is expected to scale as a power-law of slope 2/3 with mass. H owever, subsequent evolution re-shuffles this through matter accretion from filaments, mergers, star formation and feedback, secular evolution and AM exchange between baryons and dark matter. Outer parts of galaxies are essential to study since they retain most of the AM and the diagnostics of the evolution. Galaxy IFU surveys have recently provided a wealth of kinematical information in the local universe. In the future, we can expect more statistics in the outer parts, and evolution at high z, including atomic gas with SKA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا