ترغب بنشر مسار تعليمي؟ اضغط هنا

A Unitary Fermi Supersolid: The Larkin-Ovchinnikov Phase

395   0   0.0 ( 0 )
 نشر من قبل Michael McNeil Forbes
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present strong theoretical evidence that a Larkin-Ovchinnikov (LOFF/FFLO) pairing phase is favoured over the homogeneous superfluid and normal phases in three-dimensional unitary Fermi systems. Using a Density Functional Theory (DFT) based on the latest quantum Monte-Carlo calculations and experimental results, we show that this phase is competitive over a large region of the phase diagram. The oscillations in the number densities and pairing field have a substantial amplitude, and a period some 3 to 10 times the average interparticle separation. Within the DFT, the transition to a normal polarized Fermi liquid at large polarizations is smooth, while the transition to a fully-paired superfluid is abrupt.


قيم البحث

اقرأ أيضاً

We investigate the phase structure of spin-imbalanced unitary Fermi gases beyond mean-field theory by means of the Functional Renormalization Group. In this approach, quantum and thermal fluctuations are resolved in a systematic manner. The discretiz ation of the effective potential on a grid allows us to accurately account for both first- and second-order phase transitions that are present on the mean-field level. We compute the full phase diagram in the plane of temperature and spin-imbalance and discuss the existence of other conjectured phases such as the Sarma phase and a precondensation region. In addition, we explain on a qualitative level how we expect that in-situ density images are affected by our findings and which experimental signatures may potentially be used to probe the phase structure.
143 - V. H. Dao , D. Denisov , A. Buzdin 2012
We demonstrate that the vortex state in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase may be very different depending on the field orientation relative to the crystalline axes. We calculate numerically the upper critical field near the tricritica l point taking into account the modulation of the order parameter along the magnetic field as well as the higher Landau levels. For s-wave superconductors with the anisotropy described by an elliptical Fermi surface we propose a general scheme of the analysis of the angular dependence of upper critical field at all temperatures on the basis of the exact solution for the order parameter. Our results show that the transitions (with tilting magnetic field) between different types of mixed states may be a salient feature of the FFLO phase. Moreover we discuss the reasons for the first-order phase transition into the FFLO state in the case of CeCoIn5 compound.
We present a theoretical study of the influence of the nuclear ferromagnetism on superconductivity in the presence of the electron-nuclear spin interaction. It is demonstrated that in some metals, e.g. Rh, W, the BCS condensate imbedded in a matrix o f ferromagneticaly ordered nuclear spins should manifest the FFLO (Fulde-Ferel-Larkin-Ovchinniov) state. We outline that the optimal experimental conditions for observation of FFLO could be achieved by creation, via adiabatic nuclear demagnetization, of the negative nuclear spin temperatures. In this case the nuclear polarization points in the opposite to the external magnetic field direction and the electromagnetic part of the nuclear spin magnetization compensates the external magnetic field, while the exchange part creates the nonhomogeneous superconducting order parameter.
80 - M. Houzet , V. P. Mineev 2007
We develop the Ginzburg-Landau theory of the vortex lattice in clean isotropic three-dimensional superconductors at large Maki parameter, when inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov state is favored. We show that diamagnetic superfluid curren ts mainly come from paramagnetic interaction of electron spins with local magnetic field, and not from kinetic energy response to the external field as usual. We find that the stable vortex lattice keeps its triangular structure as in usual Abrikosov mixed state, while the internal magnetic field acquires components perpendicular to applied magnetic field. Experimental possibilities related to this prediction are discussed.
We develop a low-energy model of a unidirectional Larkin-Ovchinnikov (LO) state. Because the underlying rotational and translational symmetries are broken spontaneously, this gapless superfluid is a smectic liquid crystal, that exhibits fluctuations that are qualitatively stronger than in a conventional superfluid, thus requiring a fully nonlinear description of its Goldstone modes. Consequently, at nonzero temperature the LO superfluid is an algebraic phase even in 3d. It exhibits half-integer vortex-dislocation defects, whose unbinding leads to transitions to a superfluid nematic and other phases. In 2d at nonzero temperature, the LO state is always unstable to a charge-4 nematic superfluid. We expect this superfluid liquid-crystal phenomenology to be realizable in imbalanced resonant Fermi gases trapped isotropically.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا