ترغب بنشر مسار تعليمي؟ اضغط هنا

A Synthesizer Based on Frequency-Phase Analysis and Square Waves

171   0   0.0 ( 0 )
 نشر من قبل Sossio Vergara
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Sossio Vergara




اسأل ChatGPT حول البحث

This article introduces an effective generalization of the polar flavor of the Fourier Theorem based on a new method of analysis. Under the premises of the new theory an ample class of functions become viable as bases, with the further advantage of using the same basis for analysis and reconstruction. In fact other tools, like the wavelets, admit specially built nonorthogonal bases but require different bases for analysis and reconstruction (biorthogonal and dual bases) and vectorial coordinates; this renders those systems unintuitive and computing intensive. As an example of the advantages of the new generalization of the Fourier Theorem, this paper introduces a novel method for the synthesis that is based on frequency-phase series of square waves (the equivalent of the polar Fourier Theorem but for nonorthogonal bases). The resulting synthesizer is very efficient needing only few components, frugal in terms of computing needs, and viable for many applications.



قيم البحث

اقرأ أيضاً

In this study, we produce a geometrically scaled perceptual timbre space from dissimilarity ratings of subtractive synthesized sounds and correlate the resulting dimensions with a set of acoustic descriptors. We curate a set of 15 sounds, produced by a synthesis model that uses varying source waveforms, frequency modulation (FM) and a lowpass filter with an enveloped cutoff frequency. Pairwise dissimilarity ratings were collected within an online browser-based experiment. We hypothesized that a varied waveform input source and enveloped filter would act as the main vehicles for timbral variation, providing novel acoustic correlates for the perception of synthesized timbres.
In this paper, we present a systematic approach that transforms the program execution trace into the frequency domain and precisely identifies program phases. The analyzed results can be embedded into program code to mark the starting point and execu tion characteristics, such as CPI (Cycles per Instruction), of each phase. The so generated information can be applied to runtime program phase prediction. With the precise program phase information, more intelligent software and system optimization techniques can be further explored and developed.
Integrated-photonics microchips now enable a range of advanced functionalities for high-coherence applications such as data transmission, highly optimized physical sensors, and harnessing quantum states, but with cost, efficiency, and portability muc h beyond tabletop experiments. Through high-volume semiconductor processing built around advanced materials there exists an opportunity for integrated devices to impact applications cutting across disciplines of basic science and technology. Here we show how to synthesize the absolute frequency of a lightwave signal, using integrated photonics to implement lasers, system interconnects, and nonlinear frequency comb generation. The laser frequency output of our synthesizer is programmed by a microwave clock across 4 THz near 1550 nm with 1 Hz resolution and traceability to the SI second. This is accomplished with a heterogeneously integrated III/V-Si tunable laser, which is guided by dual dissipative-Kerr-soliton frequency combs fabricated on silicon chips. Through out-of-loop measurements of the phase-coherent, microwave-to-optical link, we verify that the fractional-frequency instability of the integrated photonics synthesizer matches the $7.0*10^{-13}$ reference-clock instability for a 1 second acquisition, and constrain any synthesis error to $7.7*10^{-15}$ while stepping the synthesizer across the telecommunication C band. Any application of an optical frequency source would be enabled by the precision optical synthesis presented here. Building on the ubiquitous capability in the microwave domain, our results demonstrate a first path to synthesis with integrated photonics, leveraging low-cost, low-power, and compact features that will be critical for its widespread use.
While coherently-driven Kerr microcavities have rapidly matured as a platform for frequency comb formation, such microresonators generally possess weak Kerr coefficients; consequently, triggering comb generation requires millions of photons to be cir culating inside the cavity. This suppresses the role of quantum fluctuations in the combs dynamics. In this paper, we realize a minimal version of coherently-driven Kerr-mediated microwave frequency combs in the circuit QED architecture, where the quantum vacuums fluctuations are the primary limitation on comb coherence. We achieve a comb phase coherence of up to 35~$mu$s, approaching the theoretical device quantum limit of 55~$mu$s, and vastly longer than the modes inherent lifetimes of 13~ns. The ability within cQED to engineer stronger nonlinearities than optical microresonators, together with operation at cryogenic temperatures, and excellent agreement of comb dynamics with quantum theory indicates a promising platform for the study of complex dynamics of quantum nonlinear systems
In this paper, we address a blind source separation (BSS) problem and propose a new extended framework of independent positive semidefinite tensor analysis (IPSDTA). IPSDTA is a state-of-the-art BSS method that enables us to take interfrequency corre lations into account, but the generative model is limited within the multivariate Gaussian distribution and its parameter optimization algorithm does not guarantee stable convergence. To resolve these problems, first, we propose to extend the generative model to a parametric multivariate Students t distribution that can deal with various types of signal. Secondly, we derive a new parameter optimization algorithm that guarantees the monotonic nonincrease in the cost function, providing stable convergence. Experimental results reveal that the cost function in the conventional IPSDTA does not display monotonically nonincreasing properties. On the other hand, the proposed method guarantees the monotonic nonincrease in the cost function and outperforms the conventional ILRMA and IPSDTA in the source-separation performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا