ترغب بنشر مسار تعليمي؟ اضغط هنا

Modulated X-ray Emissivity near the Stress Edge in Sgr A*

93   0   0.0 ( 0 )
 نشر من قبل Maurizio Falanga Dr.
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sgr A* is thought to be the radiative manifestation of a ~3.6E6 Msun supermassive black hole at the Galactic center. Its mm/sub-mm spectrum and its flare emission at IR and X-ray wavelengths may be produced within the inner ten Schwarzschild radii of a hot, magnetized Keplerian flow. The lightcurve produced in this region may exhibit quasi-periodic variability. We present ray-tracing simulations to determine the general-relativistically modulated X-ray luminosity expected from plasma coupled magnetically to the rest of the disk as it spirals inwards below the innermost stable circular orbit towards the stress edge in the case of a Schwarzschild metric. The resulting lightcurve exhibits a modulation similar to that observed during a recent X-ray flare from Sgr A*.

قيم البحث

اقرأ أيضاً

This paper reports the analysis procedure and results of simultaneous spectral fits of the Suzaku archive data for Sagittarius (Sgr) A East and the nearby Galactic center X-ray emission (GCXE). The results are that the mixed-morphology supernova remn ant Sgr A East has a recombining plasma (RP) with Cr and Mn He$alpha$ lines, and a power-law component (PL) with an Fe I K$alpha$ line. The nearby GCXE has a $sim$1.5-times larger surface brightness than the mean GCXE far from Sgr A East, although the spectral shape is almost identical. Based on these results, we interpret that the origins of the RP and the PL with the Fe I K$alpha$ line are past big flares of Sgr A$^*$.
The radiative counterpart of the supermassive black hole at the Galactic center (GC), Sgr A*, is subject to frequent flares visible simultaneously in X-rays and near-infrared (NIR). Often, enhanced radio variability from centimeter to sub-millimeter wavelengths is observed to follow these X-ray/NIR eruptions. We present here a multi-wavelength campaign carried out in April 2009, with the aim of characterizing this broadband flaring activity. Concurrent data from the XMM-Newton/EPIC (2-10 keV), VLT/NACO (2.1 microns, 3.8 microns), APEX/LABOCA (870 microns), and Fermi/LAT (0.1-200 GeV) instruments are employed to derive light curves and spectral energy distributions of new flares from Sgr A*. We detected two relatively bright NIR flares both associated with weak X-ray activity, one of which was followed by a strong sub-mm outburst 200 min later. Photometric spectral information on a NIR flare was obtained for the first time with NACO giving a power-law photon index alpha=-0.4pm0.3. The first attempt to detect flaring activity from the Fermi GC source 1FGL J1745.6-2900 is also reported. NIR, X-ray, and sub-mm flares are finally modeled in the context of non-thermal emission processes. It is found that the simplest scenario involving a single expanding plasmoid releasing synchrotron NIR/sub-mm and synchrotron self-Compton X-ray radiation is inadequate to reproduce the data, but suggestions to reconcile the basic elements of the theory and the observations are proposed.
94 - C. Argiroffi 2012
We report initial results from a quasi-simultaneous X-ray/optical observing campaign targeting V4046 Sgr, a close, synchronous-rotating classical T Tauri star (CTTS) binary in which both components are actively accreting. V4046 Sgr is a strong X-ray source, with the X-rays mainly arising from high-density (n_e ~ 10^(11-12) cm^(-3)) plasma at temperatures of 3-4 MK. Our multiwavelength campaign aims to simultaneously constrain the properties of this X-ray emitting plasma, the large scale magnetic field, and the accretion geometry. In this paper, we present key results obtained via time-resolved X-ray grating spectra, gathered in a 360 ks XMM-Newton observation that covered 2.2 system rotations. We find that the emission lines produced by this high-density plasma display periodic flux variations with a measured period, 1.22+/-0.01 d, that is precisely half that of the binary star system (2.42 d). The observed rotational modulation can be explained assuming that the high-density plasma occupies small portions of the stellar surfaces, corotating with the stars, and that the high-density plasma is not azimuthally symmetrically distributed with respect to the rotational axis of each star. These results strongly support models in which high-density, X-ray-emitting CTTS plasma is material heated in accretion shocks, located at the base of accretion flows tied to the system by magnetic field lines.
We analyze 134 ks Chandra ACIS-I observations of the Galactic Centre (GC) performed in July 2011. The X-ray image with the field of view $17 times 17$ contains the hot plasma surrounding the Sgr~A*. The obtained surface brightness map allow us to fit Bondi hot accretion flow to the innermost hot plasma around the GC. We have fitted spectra from region up to $5$ from Sgr~A* using a thermal bremsstrahlung model and four Gaussian profiles responsible for K$_{alpha}$ emission lines of Fe, S, Ar, and Ca. The X-ray surface brightness profile up to $3$ from Sgr~A* found in our data image, was successfully fitted with the dynamical model of Bondi spherical accretion. By modelling the surface brightness profile, we derived the temperature and number density profiles in the vicinity of the black hole. The best fitted model of spherical Bondi accretion shows that this type of flow works only up to $3$ and implies outer plasma density and temperature to be: $n_{rm e}^{rm out}=18.3 pm {0.1}$ cm$^{-3}$ and $T_{rm e}^{rm out}= 3.5 pm {0.3}$ keV respectively. We show that the Bondi flow can reproduce observed surface brightness profile up to $3$ from Sgr~A* in the Galactic Center. This result strongly suggests the position of stagnation radius in the complicated dynamics around GC. The Faraday rotation computed from our model towards the pulsar PSR J1745-2900 near the GC agrees with the observed one, recently reported.
We address a question whether the observed light curves of X-ray flares originating deep in galactic cores can give us independent constraints on the mass of the central supermassive black hole. To this end we study four brightest flares that have be en recorded from Sagittarius A*. They all exhibit an asymmetric shape consistent with a combination of two intrinsically separate peaks that occur at a certain time-delay with respect to each other, and are characterized by their mutual flux ratio and the profile of raising/declining parts. Such asymmetric shapes arise naturally in the scenario of a temporary flash from a source orbiting near a super- massive black hole, at radius of only 10-20 gravitational radii. An interplay of relativistic effects is responsible for the modulation of the observed light curves: Doppler boosting, gravitational redshift, light focusing, and light-travel time delays. We find the flare properties to be in agreement with the simulations (our ray-tracing code sim5lib). The inferred mass for each of the flares comes out in agreement with previous estimates based on orbits of stars; the latter have been observed at radii and over time-scales two orders of magnitude larger than those typical for the X-ray flares, so the two methods are genuinely different. We test the reliability of the method by applying it to another object, namely, the Seyfert I galaxy RE J1034+396.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا