ﻻ يوجد ملخص باللغة العربية
We investigate the nature (Dirac vs. Majorana) and size of left-handed neutrino masses in a supersymmetric five-dimensional model compactified in the interval [0,pi R], where quarks and leptons are localized on the boundaries while the gauge and Higgs sectors propagate in the bulk of the fifth dimension. Supersymmetry is broken by Scherk-Schwarz boundary conditions and electroweak breaking proceeds through radiative corrections. Right-handed neutrinos propagate in the bulk and have a general five-dimensional mass M, which localizes the zero modes towards one of the boundaries, and arbitrary boundary terms. We have found that for generic boundary terms left-handed neutrinos have Majorana masses. However for specific boundary configurations left-handed neutrinos are Dirac fermions as the theory possesses a conserved global U(1) symmetry which prevents violation of lepton number. The size of neutrino masses depends on the localization of the zero-modes of right-handed neutrinos and/or the size of the five-dimensional neutrino Yukawa couplings. Left-handed neutrinos in the sub-eV range require either MR~10 or Yukawa couplings ~10^{-3}R, which make the five-dimensional theory perturbative up to its natural cutoff.
We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated within supersymmetric gauge extensions of the Standard Model with a generalized supersymmetry breaking sector. If the usual superpotential Yukawa couplings
It is shown how pure Dirac neutrino masses can naturally occur at low energies even in the presence of Planck scale lepton number violation. The geometrical picture in five dimensions assumes that the lepton number symmetry is explicitly broken on th
SHiP is a proposed high-intensity beam dump experiment set to operate at the CERN SPS. It is expected to have an unprecedented sensitivity to a variety of models containing feebly interacting particles, such as Heavy Neutral Leptons (HNLs). Two HNLs
The texture zero mass matrices for the leptons and the seesaw mechanism are used to derive relations between the matrix elements of the lepton mixing matrix and the ratios of the neutrino masses.
We consider fermions on an extra dimensional interval. We find the boundary conditions at the ends of the interval that are consistent with the variational principle, and explain which ones arise in various physical circumstances. We apply these resu