ترغب بنشر مسار تعليمي؟ اضغط هنا

Large Number, Dark Matter, Dark Energy, and the Superstructures in the Universe (with Extension)

212   0   0.0 ( 0 )
 نشر من قبل Wuliang Huang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since there are dark matter particles (neutrino) with mass about 10^(-1)eV in the universe, the superstructures with a scale of 10^(19) solar mass [large number A is about 10^(19)] appeared around the era of the hydrogen recombination. The redshift z distributions of quasars support the existence of superstructures. Since there are superstructures in the universe, it is not necessary for the hypothesis of dark energy. While neutrino is related to electro-weak field, the fourth stable elementary particles (delta particle) with mass about 10^(0)eV to 10^(1)eV is related to gravitation-strong field, which suggests p + anti(p)--> n/anti(n) + anti(delta particle)/(delta particle) and that some new meta-stable baryons appeared near the TeV region. Therefore, a twofold standard model diagram is proposed, and related to many experiment phenomena: The new meta-stable baryons decays produce delta particles, which are helpful to explain the Dijet asymmetry phenomena at LHC of CERN, the different results for the Fermilabs data peak, etc; However, according to the (B-L) invariance, the sterile neutrino from the event excess in MiniBooNe can not be the fourth neutrino but rather the delta particle; We think that the delta particles are related to the phenomenon about neutrinos FTL, and that anti-neutrinos are faster than neutrinos. FTL is also related to the cosmic inflation, singular point disappearance, and abnormal red shift of SN Ia. Some experiments and observations are suggested. In the Extension section, we clarify mass tree, our finite universe, cosmic dual expansions, dual SM etc. And the LHC can look for new particles with decay products graviton/delta particle and new interaction indeed.



قيم البحث

اقرأ أيضاً

From the observed results of the space distribution of quasars we deduced that neutrino mass is about 10^(-1) eV. The fourth stable elementary particle (delta particle) with mass about 10^(0) eV can help explain the energy resource mechanism in quasa rs, cosmic ultra-high energy particles, as well as the flatness of spiral galaxy rotation curves. The blue bump and IR bump in the quasar irradiation spectra, as well as the peaks of EBL (Extra-galactic Background Light) around 10^(0) eV and 10^(-1) eV, are related to the annihilation of delta particle with anti-delta particle and neutrino with anti-neutrino respectively. This enlightens us to explore the reason for missing solar neutrinos and the unlimited energy resource in a new manner. For delta-particle search it is related to Dual SM or Two-fold SM; the relationship between space electron spectrum (>10^(0)Tev) and cosmic ray spectrum (knee and ankle) at high energy region; and the characteristics of spherical universe. Appendix is the theory part, which related to mass tree, inflation, BSM, finite universe.
We extend mass scale sequence to a mass tree. From mass tree, the evolution of the universe is described by three stages: chaos, inflation and expansion. The first two stages have c mutations and the inflation appears as a step by step fission proces s of black holes. The dark matter particles with low mass (neutrino and delta particle) are described in a dual SM or two-fold SM with new symmetry and new interaction, and delta-particle is like inert neutrino but has baryon number (L-B conservation). We emphasize how to search for delta-particle, how to research critical energy, critical density, background particles, and spherical universe. Critical density relates to a type of pseudo-balance black holes (or celestial bodies). Suppose the minimum black hole radius equal to proton radius means we live in a spherical universe, which belong to a big universe, mainly characterized by proton.
A cosmological model of an holographic dark energy interacting with dark matter throughout a decaying term of the form $Q=3(lambda_1rho_{DE} + lambda_2rho_m) H$ is investigated. General constraint on the parameters of the model are found when acceler ated expansion is imposed and we found a phantom scenarios, without any reference to a specific equation of state for the dark energy. The behavior of equation of stated for dark energy is also discussed.
247 - Harald Fritzsch , Joan Sola 2012
In an expanding universe the vacuum energy density rho_{Lambda} is expected to be a dynamical quantity. In quantum field theory in curved space-time rho_{Lambda} should exhibit a slow evolution, determined by the expansion rate of the universe H. Rec ent measurements on the time variation of the fine structure constant and of the proton-electron mass ratio suggest that basic quantities of the Standard Model, such as the QCD scale parameter Lambda_{QCD}, may not be conserved in the course of the cosmological evolution. The masses of the nucleons m_N and of the atomic nuclei would also be affected. Matter is not conserved in such a universe. These measurements can be interpreted as a leakage of matter into vacuum or vice versa. We point out that the amount of leakage necessary to explain the measured value of dot{m}_N/m_N could be of the same order of magnitude as the observationally allowed value of dot{rho}_{Lambda}/rho_{Lambda}, with a possible contribution from the dark matter particles. The dark energy in our universe could be the dynamical vacuum energy in interaction with ordinary baryonic matter as well as with dark matter.
In warm dark matter scenarios structure formation is suppressed on small scales with respect to the cold dark matter case, reducing the number of low-mass halos and the fraction of ionized gas at high redshifts and thus, delaying reionization. This h as an impact on the ionization history of the Universe and measurements of the optical depth to reionization, of the evolution of the global fraction of ionized gas and of the thermal history of the intergalactic medium, can be used to set constraints on the mass of the dark matter particle. However, the suppression of the fraction of ionized medium in these scenarios can be partly compensated by varying other parameters, as the ionization efficiency or the minimum mass for which halos can host star-forming galaxies. Here we use different data sets regarding the ionization and thermal histories of the Universe and, taking into account the degeneracies from several astrophysical parameters, we obtain a lower bound on the mass of thermal warm dark matter candidates of $m_X > 1.3$ keV, or $m_s > 5.5$ keV for the case of sterile neutrinos non-resonantly produced in the early Universe, both at 90% confidence level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا