ترغب بنشر مسار تعليمي؟ اضغط هنا

The core flux of the brightest 10 micron galaxies in the southern sky

199   0   0.0 ( 0 )
 نشر من قبل David Raban
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims. Near diffraction-limited images have been taken at 8.9, 11.9, and 12.9 micron for the brightest extragalactic sources in the southern sky, in order to optimally plan N-band observations with MIDI (MID-infrared Interferometric instrument) at the VLTI. Methods. We have assembled a sample of 21 objects consisting of all the AGNs observable from Paranal observatory, Chile, plus three non-AGN objects, with an estimated N-band flux greater than 400mJy. We used the TIMMI2 Mid Infrared instrument mounted on the ESOs 3.6m telescope to obtain near diffraction-limited images in order to establish the unresolved core flux within < 0.5 arscsec. Results. Positions and core total fluxes were obtained for all sources in our sample and compared with similar investigations in the literature. We find that 15 AGN and the nuclear starburst in NGC 253 exhibit an unresolved core flux < 300mJy at 11.9 micron, making them promising targets for MIDI at the VLTI. For extended sources, near diffraction-limited images are presented and discussed.

قيم البحث

اقرأ أيضاً

We cross correlate the well-defined and very complete spectroscopic Main Galaxy Sample (MGS) of 156,000 bright (r<17.5 mag) galaxies from the SDSS with 2MASS sources to explore the nature and completeness of the 2MASS K-band selection of nearby galax ies. 2MASS detects 90% of the MGS brighter than r=17 mag. For r<16, 93.1% of the MGS is found in the 2MASS Extended Source Catalog (XSC). These detections span the representative range of optical and near-IR galaxy properties, but with a surface brightness-dependent bias to preferentially miss the most blue and low-concentration sources, consistent with the most morphologically late-type galaxy population. An XSC completeness of 97.5% is achievable at bright magnitudes, with blue LSBs being the only major source of incompleteness, if one follows our careful matching criteria and weeds out spurious SDSS sources. We conclude that the rapid drop in XSC completeness at r>16 reflects the sharp surface-brightness limit of the extended source detection algorithm in 2MASS. As a result, the r>16 galaxies found in the XSC are over-representative in red early types and under-representative in blue latetypes. At r>16 the XSC suffers an additional selection effect from the 2-3 spatial resolution limit of 2MASS. Therefore, 2MASS continues to detect 90% of of the MGS at 16<r<17, but with a growing fraction found in the Point Source Catalog (PSC) only. Overall, one third of the MGS is detected in the 2MASS PSC but not the XSC. A combined K<13.57 and r<16 selection provides the most representative inventory of galaxies in the local cosmos with near-IR and optical measurements, and 90.8% completeness. Using data from SDSS-DR2, this sample contains 19,156 galaxies with a median redshift of 0.052. (abridged)
We report that a Jupiter-mass planet, WASP-7b, transits the V = 9.5 star HD197286 every 4.95 d. This is the brightest discovery from the WASP-South transit survey and the brightest transiting-exoplanet system in the Southern hemisphere. WASP-7b is am ong the densest of the known Jupiter-mass planets, suggesting that it has a massive core. The planet mass is 0.96 M_Jup, the radius 0.915 R_Jup, and the density 1.26 rho_Jup.
We examine the optical emission line properties of Brightest Cluster Galaxies (BCGs) selected from two large, homogeneous datasets. The first is the X-ray selected National Optical Astronomy Observatory Fundamental Plane Survey (NFPS), and the second is the C4 catalogue of optically selected clusters built from the Sloan Digital Sky Survey Data Release ~3 (SDSS DR3). Our goal is to better understand the optical line emission in BCGs with respect to properties of the galaxy and the host cluster. Throughout the analysis we compare the line emission of the BCGs to that of a control sample made of the other bright galaxies near the cluster centre. Overall, both the NFPS and SDSS show a modest fraction of BCGs with emission lines (~15%). No trend in the fraction of emitting BCGs as a function of galaxy mass or cluster velocity dispersion is found. However we find that, for those BCGs found in cooling flow clusters, 71^{+9}_{-14}% have optical emission. Furthermore, if we consider only BCGs within 50kpc of the X-ray centre of a cooling flow cluster, the emission-line fraction rises further to 100^{+0}_{-15}%. Excluding the cooling flow clusters, only ~10% of BCGs are line emitting, comparable to the control sample of galaxies. We show that the physical origin of the emission line activity varies: in some cases it has LINER-like line ratios, whereas in others it is a composite of star-formation and LINER-like activity. We conclude that the presence of emission lines in BCGs is directly related to the cooling of X-ray gas at the cluster centre.
Using new and published data, we construct a sample of 160 brightest cluster galaxies (BCGs) spanning the redshift interval 0.03 < z < 1.63. We use this sample, which covers 70% of the history of the universe, to measure the growth in the stellar mas s of BCGs after correcting for the correlation between the stellar mass of the BCG and the mass of the cluster in which it lives. We find that the stellar mass of BCGs increase by a factor of 1.8 between z=0.9 and z=0.2. Compared to earlier works, our result is closer to the predictions of semi-analytic models. However, BCGs at z=0.9, relative to BCGs at z=0.2, are still a factor of 1.5 more massive than the predictions of these models. Star formation rates in BCGs at z~1 are generally to low to result in significant amounts of mass. Instead, it is likely that most of the mass build up occurs through mainly dry mergers in which perhaps half of the mass is lost to the intra-cluster medium of the cluster.
We present the results of a survey of the brightest UV-selected galaxies in protoclusters. These proto-brightest cluster galaxy (proto-BCG) candidates are drawn from 179 overdense regions of $g$-dropout galaxies at $zsim4$ from the Hyper Suprime-Cam Subaru Strategic Program identified previously as good protocluster candidates. This study is the first to extend the systematic study of the progenitors of BCGs from $zsim2$ to $zsim4$. We carefully remove possible contaminants from foreground galaxies and, for each structure, we select the brightest galaxy that is at least 1 mag brighter than the fifth brightest galaxy. We select 63 proto-BCG candidates and compare their properties with those of galaxies in the field and those of other galaxies in overdense structures. The proto-BCG candidates and their surrounding galaxies have different rest-UV color $(i - z)$ distributions to field galaxies and other galaxies in protoclusters that do not host proto-BCGs. In addition, galaxies surrounding proto-BCGs are brighter than those in protoclusters without proto-BCGs. The image stacking analysis reveals that the average effective radius of proto-BCGs is $sim28%$ larger than that of field galaxies. The $i-z$ color differences suggest that proto-BCGs and their surrounding galaxies are dustier than other galaxies at $zsim4$. These results suggest that specific environmental effects or assembly biasses have already emerged in some protoclusters as early as $z sim 4$, and we suggest that proto-BCGs have different star formation histories than other galaxies in the same epoch.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا