ﻻ يوجد ملخص باللغة العربية
In a recent work, Jarzynski and Wojcik (2004 Phys. Rev. Lett. 92, 230602) have shown by using the properties of Hamiltonian dynamics and a statistical mechanical consideration that, through contact, heat exchange between two systems initially prepared at different temperatures obeys a fluctuation theorem. Here, another proof is presented, in which only macroscopic thermodynamic quantities are employed. The detailed balance condition is found to play an essential role. As a result, the theorem is found to hold under very general conditions.
We examine the Hall conductivity of macroscopic two-dimensional quantum system, and show that the observed quantities can sometimes violate the fluctuation dissipation theorem (FDT), even in the linear response (LR) regime infinitesimally close to eq
We use a relationship between response and correlation function in nonequilibrium systems to establish a connection between the heat production and the deviations from the equilibrium fluctuation-dissipation theorem. This scheme extends the Harada-Sa
Stationary non-equilibrium states describe steady flows through macroscopic systems. Although they represent the simplest generalization of equilibrium states, they exhibit a variety of new phenomena. Within a statistical mechanics approach, these st
In recent letter [Phys.~Rev.~Lett {bf 123}, 110602 (2019)], Y.~Hasegawa and T.~V.~Vu derived a thermodynamic uncertainty relation. But the bound of their relation is loose. In this comment, through minor changes, an improved bound is obtained. This i
The Macroscopic Fluctuation Theory is an effective framework to describe transports and their fluctuations in classical out-of-equilibrium diffusive systems. Whether the Macroscopic Fluctuation Theory may be extended to the quantum realm and which fo