ﻻ يوجد ملخص باللغة العربية
We calculate the screening function in bilayer graphene (BLG) both in the intrinsic (undoped) and the extrinsic (doped) regime within random phase approximation, comparing our results with the corresponding single layer graphene (SLG) and the regular two dimensional electron gas (2DEG). We find that the Kohn anomaly is strongly enhanced in BLG. We also discuss the Friedel oscillation and the RKKY interaction, which are associated with the non-analytic behavior of the screening function at $q=2k_F$. We find that the Kohn anomaly, the Friedel oscillation, and the RKKY interaction are all qualitatively different in the BLG compared with the SLG and the 2DEG.
We investigate the effect of the mass anisotropy on Friedel Oscillations, Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, screening properties, and Boltzmann transport in two dimensional (2D) metallic and doped semiconductor systems. We calculate t
The electron-phonon interaction (EPI) is instrumental in a wide variety of phenomena in solid-state physics, such as electrical resistivity in metals, carrier mobility, optical transition and polaron effects in semiconductors, lifetime of hot carrier
The recent demonstration of saturable absorption and negative optical conductivity in the Terahertz range in graphene has opened up new opportunities for optoelectronic applications based on this and other low dimensional materials. Recently, populat
The interplay of electron-phonon (el-ph) and electron-electron (el-el) interactions in epitaxial graphene is studied by directly probing its electronic structure. We found a strong coupling of electrons to the soft part of the A1g phonon evident by a
We present the results of the experimental investigation of the low - frequency noise in bilayer graphene transistors. The back - gated devices were fabricated using the electron beam lithography and evaporation. The charge neutrality point for the f