ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum critical dynamics of a S = 1/2 antiferromagnetic Heisenberg chain studied by 13C-NMR spectroscopy

219   0   0.0 ( 0 )
 نشر من قبل Hannes Kuehne
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a 13C-NMR study of the magnetic field driven transition to complete polarization of the S=1/2 antiferromagnetic Heisenberg chain system copper pyrazine dinitrate Cu(C_4H_4N_2)(NO_3)_2 (CuPzN). The static local magnetization as well as the low-frequency spin dynamics, probed via the nuclear spin-lattice relaxation rate 1/T_1, were explored from the low to the high field limit and at temperatures from the quantum regime (k_B T << J) up to the classical regime (k_B T >> J). The experimental data show very good agreement with quantum Monte Carlo calculations over the complete range of parameters investigated. Close to the critical field, as derived from static experiments, a pronounced maximum in 1/T_1 is found which we interpret as the finite-temperature manifestation of a diverging density of zero-energy magnetic excitations at the field-driven quantum critical point.



قيم البحث

اقرأ أيضاً

The magnetic properties of Na2CuP2O7 were investigated by means of 31P nuclear magnetic resonance (NMR), magnetic susceptibility, and heat capacity measurements. We report the 31P NMR shift, the spin-lattice 1/T1, and spin-spin 1/T2 relaxation-rate d ata as a function of temperature T. The temperature dependence of the NMR shift K(T) is well described by the S=1/2 square lattice Heisenberg antiferromagnetic (HAF) model with an intraplanar exchange of J/k_B simeq 18pm2 K and a hyperfine coupling A = (3533pm185) Oe/mu_B. The 31P NMR spectrum was found to broaden abruptly below T sim 10 K signifying some kind of transition. However, no anomaly was noticed in the bulk susceptibility data down to 1.8 K. The heat capacity appears to have a weak maximum around 10 K. With decrease in temperatures, the spin-lattice relaxation rate 1/T1 decreases monotonically and appears to agree well with the high temperature series expansion expression for a S = 1/2 2D square lattice.
We successfully synthesized the zinc-verdazyl complex [Zn(hfac)$_2$]$cdot$($o$-Py-V) [hfac = 1,1,1,5,5,5-hexafluoroacetylacetonate; $o$-Py-V = 3-(2-pyridyl)-1,5-diphenylverdazyl], which is an ideal model compound with an $S$ = 1/2 ferromagnetic-antif erromagnetic alternating Heisenberg chain (F-AF AHC). $Ab$ $initio$ molecular orbital (MO) calculations indicate that two dominant interactions $J_{rm{F}}$ and $J_{rm{AF}}$ form the $S=1/2$ F-AF AHC in this compound. The magnetic susceptibility and magnetic specific heat of the compound exhibit thermally activated behavior below approximately 1 K. Furthermore, its magnetization curve is observed up to the saturation field and directly indicates a zero-field excitation gap of 0.5 T. These experimental results provide evidence for the existence of a Haldane gap. We successfully explain the results in terms of the $S=1/2$ F-AF AHC through quantum Monte Carlo calculations with $|J_{rm{AF}}/J_{rm{F}}|$ = 0.22. The $ab$ $initio$ MO calculations also indicate a weak AF interchain interaction $J$ and that the coupled F-AF AHCs form a honeycomb lattice. The $J$ dependence of the Haldane gap is calculated, and the actual value of $J$ is determined to be less than 0.01$|J_{rm{F}}|$.
83 - M. Jeong , H. M. R{o}nnow 2015
We demonstrate quantum critical scaling for an $S=1/2$ Heisenberg antiferromagnetic chain compound CuPzN in a magnetic field around saturation, by analysing previously reported magnetization [Y. Kono {it et al.}, Phys. Rev. Lett. {bf 114}, 037202 (20 15)], thermal expansion [J. Rohrkamp {it et al.}, J. Phys.: Conf. Ser. {bf 200}, 012169 (2010)] and NMR relaxation data [H. Kuhne {it et al.}, Phys. Rev. B {bf 80}, 045110 (2009)]. The scaling of magnetization is demonstrated through collapsing the data for a range of both temperature and field onto a single curve without making any assumption for a theoretical form. The data collapse is subsequently shown to closely follow the theoretically-predicted scaling function without any adjustable parameters. Experimental boundaries for the quantum critical region could be drawn from the variable range beyond which the scaled data deviate from the theoretical function. Similarly to the magnetization, quantum critical scaling of the thermal expansion is also demonstrated. Further, the spin dynamics probed via NMR relaxation rate $1/T_1$ close to the saturation is shown to follow the theoretically-predicted quantum critical behavior as $1/T_1propto T^{-0.5}$ persisting up to temperatures as high as $k_mathrm{B}T simeq J$, where $J$ is the exchange coupling constant.
Anderson localization is a general phenomenon of wave physics, which stems from the interference between multiple scattering paths1,2. It was originally proposed for electrons in a crystal, but later was also observed for light3-5, microwaves6, ultra sound7,8, and ultracold atoms9-12. Actually, in a crystal, besides electrons there may exist other quasiparticles such as magnons and spinons. However the search for Anderson localization of these magnetic excitations is rare so far. Here we report the first observation of spinon localization in copper benzoate, an ideal compound of spin-1/2 antiferromagnetic Heisenberg chain, by ultra-low-temperature specific heat and thermal conductivity measurements. We find that while the spinon specific heat Cs displays linear temperature dependence down to 50 mK, the spinons thermal conductivity ks only manifests the linear temperature dependence down to 300 mK. Below 300 mK, ks/T decreases rapidly and vanishes at about 100 mK, which is a clear evidence for Anderson localization. Our finding opens a new window for studying such a fundamental phenomenon in condensed matter physics.
We report zero and longitudinal magnetic field muon spin relaxation measurements of the spin S=1/2 antiferromagnetic Heisenberg chain material SrCuO2. We find that in a weak applied magnetic field B the spin-lattice relaxation rate follows a power la w B^n with n=-0.9(3). This result is temperature independent for 5K < T < 300 K. Within conformal field theory and using the Muller ansatz we conclude ballistic spin transport in SrCuO2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا