ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple and Precessing Collimated Outflows in the Planetary Nebula IC 4634

43   0   0.0 ( 0 )
 نشر من قبل Martin A. Guerrero
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. A. Guerrero




اسأل ChatGPT حول البحث

With its remarkable double-S shape, IC 4634 is an archetype of point-symmetric planetary nebulae (PN). In this paper, we present a detailed study of this PN using archival HST WFPC2 and ground-based narrow-band images to investigate its morphology, and long-slit spectroscopic observations to determine its kinematics and to derive its physical conditions and excitation. The data reveal new structural components, including a distant string of knots distributed along an arc-like feature 40-60 from the center of the nebula, a skin of enhanced [O III]/H-alpha ratio enveloping the inner shell and the double-S feature, and a triple-shell structure. The spatio-kinematical study also finds an equatorial component of the main nebula that is kinematically independent from the bright inner S-shaped arc. We have investigated in detail the bow shock-like features in IC 4634 and found that their morphological, kinematical and emission properties are consistent with the interaction of a collimated outflow with surrounding material. Indeed, the morphology and kinematics of some of these features can be interpreted using a 3D numerical simulation of a collimated outflow precessing at a moderate, time-dependent velocity. Apparently, IC 4634 has experienced several episodes of point-symmetric ejections oriented at different directions with the outer S-shaped feature being related to an earlier point-symmetric ejection and the outermost arc-like string of knots being the relic of an even much earlier point-symmetric ejection. There is tantalizing evidence that the action of these collimated outflows has also taken part in the shaping of the innermost shell and inner S-shaped arc of IC 4634.

قيم البحث

اقرأ أيضاً

35 - Dinh-V-Trung , Jeremy Lim 2008
We present high angular resolution observations of the HC$_3$N J=5--4 line from the Egg nebula, which is the archetype of protoplanetary nebulae. We find that the HC$_{rm 3}$N emission in the approaching and receding portion of the envelope traces a clumpy hollow shell, similar to that seen in normal carbon rich envelopes. Near the systemic velocity, the hollow shell is fragmented into several large blobs or arcs with missing portions correspond spatially to locations of previously reported high--velocity outlows in the Egg nebula. This provides direct evidence for the disruption of the slowly--expanding envelope ejected during the AGB phase by the collimated fast outflows initiated during the transition to the protoplanetary nebula phase. We also find that the intersection of fast molecular outflows previously suggested as the location of the central post-AGB star is significantly offset from the center of the hollow shell. From modelling the HC$_3$N distribution we could reproduce qualitatively the spatial kinematics of the HC$_3$N J=5--4 emission using a HC$_3$N shell with two pairs of cavities cleared by the collimated high velocity outflows along the polar direction and in the equatorial plane. We infer a relatively high abundance of HC$_3$N/H$_2$ $sim$3x10$^{-6}$ for an estimated mass--loss rate of 3x10$^{-5}$ M$_odot$ yr$^{-1}$ in the HC$_3$N shell. The high abundance of HC$_3$N and the presence of some weaker J=5--4 emission in the vicinity of the central post-AGB star suggest an unusually efficient formation of this molecule in the Egg nebula.
Water fountains (WFs) are evolved objects showing high-velocity, collimated jets traced by water maser emission. Most of them are in the post-Asymptotic Giant Branch and they may represent one of the first manifestations of collimated mass loss in ev olved stars. We present water maser, carbon monoxide, and mid-infrared spectroscopic data (obtained with the Australia Telescope Compact Array, Herschel Space Observatory, and the Very Large Telescope, respectively) toward IRAS 15103--5754, a possible planetary nebula (PN) with WF characteristics. Carbon monoxide observations show that IRAS 15103-5754 is an evolved object, while the mid-IR spectrum displays unambiguous [NeII] emission, indicating that photoionization has started and thus, its nature as a PN is confirmed. Water maser spectra show several components spreading over a large velocity range ~75 km/s and tracing a collimated jet. This indicates that the object is a WF, the first WF known that has already entered the PN phase. However, the spatial and kinematical distribution of the maser emission in this object are significantly different from those in other WFs. Moreover, the velocity distribution of the maser emission shows a Hubble-like flow (higher velocities at larger distances from the central star), consistent with a short-lived, explosive mass-loss event. This velocity pattern is not seen in other WFs (presumably in earlier evolutionary stages). We therefore suggest that we are witnessing a fundamental change of mass-loss processes in WFs, with water masers being pumped by steady jets in post-AGB stars, but tracing explosive/ballistic events as the object enters the PN phase.
The ACIS-S camera on board the Chandra X-ray Observatory has been used to discover a hot bubble in the planetary nebula (PN) IC4593, the most distant PN detected by Chandra so far. The data are used to study the distribution of the X-ray-emitting gas in IC 4593 and to estimate its physical properties. The hot bubble has a radius of ~2$^{primeprime}$ and is found to be confined inside the optically-bright innermost cavity of IC 4593. The X-ray emission is mostly consistent with that of an optically-thin plasma with temperature $kTapprox0.15$ keV (or $T_mathrm{X}approx1.7times10^{6}$ K), electron density $n_mathrm{e}approx15$ cm$^{-3}$, and intrinsic X-ray luminosity in the 0.3-1.5 keV energy range $L_mathrm{X}=3.4times10^{30}$ erg s$^{-1}$. A careful analysis of the distribution of hard ($E>$0.8 keV) photons in IC 4593 suggests the presence of X-ray emission from a point source likely associated with its central star (CSPN). If this were the case, its estimated X-ray luminosity would be $L_mathrm{X,CSPN}=7times10^{29}$ erg s$^{-1}$, fulfilling the log$(L_mathrm{X,CSPN}/L_mathrm{bol})approx-7$ relation for self-shocking winds in hot stars. The X-ray detection of the CSPN helps explain the presence of high-ionisation species detected in the UV spectra as predicted by stellar atmosphere models.
A significant fraction of planetary nebulae (PNe) exhibit collimated outflows, distinct narrow kinematical components with notable velocity shifts with respect to the main nebular shells typically associated with low-ionization compact knots and line ar or precessing jet-like features. We present here a spatio-kinematical investigation of a sample of twelve PNe with morphologies in emission lines of low-ionization species suggestive of collimated outflows. Using archival narrow-band images and our own high-dispersion long-slit echelle spectra, we confirm the presence of collimated outflows in Hen 2-429, J 320, M 1-66, M 2-40, M 3-1, and NGC 6210 and possibly in NGC 6741, for which the spatio-kinematical data can also be interpreted as a pair of bipolar lobes. The presence of collimated outflows is rejected in Hen 2-47, Hen 2-115, M 1-26, and M 1-37, but their morphology and kinematics are indicative of the action of supersonic outflows that have not been able to pierce through the nebular envelope. In this sense, M 1-66 appears to have experienced a similar interaction between the outflow and nebular envelope, but, as opposed to these four PNe, the outflow has been able to break through the nebular envelope. It is suggested that the PNe without collimated outflows in our sample are younger or descend from lower mass progenitors than those that exhibit unambiguous collimated outflows.
Magnetic fields of order $10^1-10^2$ gauss that are present in the envelopes of red giant stars are ejected in common envelope scenarios. These fields could be responsible for the launching of magnetically driven winds in proto-planetary nebulae. Usi ng 2D simulations of magnetized winds interacting with an envelope drawn from a 3D simulation of the common envelope phase, we study the confinement, heating, and magnetic field development of post-common envelope winds. We find that the ejected magnetic field can be enhanced via compression by factors up to $sim 10^4$ in circumbinary disks during the self-regulated phases. We find values for the kinetic energy of the order of $10^{46}$ erg that explain the large values inferred in proto-planetary nebula outflows. We show that the interaction of the formed circumbinary disk with a spherical, stellar wind produces a tapered flow that is almost indistinguishable from an imposed tapered flow. This increases the uncertainty of the origin of proto-planetary nebula winds, which could be either stellar, circumstellar (stellar accretion disk), circumbinary (circumbinary accretion disk), or a combination of all three. Within this framework, a scenario for self-collimation of weakly magnetized winds is discussed, which can explain the two objects where the collimation process is observationally resolved, HD 101584 and Hen 3-1475. An explanation for the equatorial, molecular hydrogen emission in CRL 2688 is also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا