ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-Term Variability in the Optical Spectrum of the Seyfert Galaxy NGC 2992

111   0   0.0 ( 0 )
 نشر من قبل Margaret Trippe
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New spectra of NGC 2992 from the Cerro Tololo Inter-American Observatory show that this nearby AGN has changed its type classification to a Seyfert 2 in 2006. It was originally classified as a Seyfert 1.9, and has been previously seen as a Seyfert 1.5 with strong broad Halpha emission. A comparison of the reddening and equivalent hydrogen column density derived for the narrow-line region from these new data with those previously calculated for different regions closer to the nucleus shows them to be very similar, and suggests that these different regions are all being absorbed by the same opacity source, a large 100-pc scale dust lane running across the nucleus. However, obscuration by dust in this lane is probably not responsible for classification changes which occur in only a few years. It is more likely that NGC 2992s observed variations are due to a highly variable ionizing continuum. We therefore conclude that, although NGC 2992 was originally identified as a Seyfert 1.9, this was not because of an oblique viewing angle through the atmosphere of a central dusty torus, but because its active nucleus was identified when it was in a low continuum state.



قيم البحث

اقرأ أيضاً

119 - S. Veilleux 2000
We report on a detailed kinematic study of the galactic-scale outflow in the Seyfert galaxy NGC 2992. The TAURUS-2 Imaging Fabry-Perot Interferometer was used on the Anglo-Australian 3.9-m telescope to derive the two-dimensional velocity field of the Halpha-emitting gas over the central arcminute of NGC 2992. The complete two-dimensional coverage of the data combined with simple kinematic models of rotating axisymmetric disks allows us to differentiate the outflowing material from the line-emitting material associated with the galactic disk. The kinematics of the disk component out to R = 3.0 kpc are well modeled by pure circular rotation. The outflow component is distributed into two wide cones with opening angle of 125 -- 135 degrees and extending 2.8 kpc (18) on both sides of the nucleus at nearly right angles to the disk kinematic major axis. The outflow on the SE side of the nucleus is made of two distinct kinematic components interpreted as the front and back walls of a cone. The azimuthal velocity gradient in the back-wall component reflects residual rotational motion which indicates either that the outflowing material was lifted from the disk or that the underlying galactic disk is contributing slightly to this component. A single outflow component is detected in the NW cone. The most likely energy source for this outflow is a hot bipolar thermal wind powered on sub-kpc scale by the AGN and diverted along the galaxy minor axis by the pressure gradient of the ISM in the host galaxy. The data are not consistent with a starburst-driven wind or a collimated outflow powered by radio jets. (abridged)
We present the results of concurrent X-ray and optical monitoring of the Seyfert 1 galaxy Mrk 79 over a period of more than five years. We find that on short to medium time-scales (days to a few tens of days) the 2-10 keV X-ray and optical u and V ba nd fluxes are significantly correlated, with a delay between the bands consistent with zero days. We show that most of these variations may be well reproduced by a model where the short-term optical variations originate from reprocessing of X-rays by an optically thick accretion disc. The optical light curves, however, also display long time-scale variations over thousands of days, which are not present in the X-ray light curve. These optical variations must originate from an independent variability mechanism and we show that they can be produced by variations in the (geometrically) thin disc accretion rate as well as by varying reprocessed fractions through changes in the location of the X-ray corona.
Flux variability is one of the defining characteristics of Seyfert galaxies, a class of active galactic nuclei (AGN). Though these variations are observed over a wide range of wavelengths, results on their flux variability characteristics in the ultr a-violet (UV) band are very limited. We present here the long term UV flux variability characteristics of a sample of fourteen Seyfert galaxies using data from the International Ultraviolet Explorer acquired between 1978 and 1995. We found that all the sources showed flux variations with no statistically significant difference in the amplitude of UV flux variation between shorter and longer wavelengths. Also, the flux variations between different near-UV (NUV, 1850 - 3300 A) and far-UV (FUV, 1150 - 2000 A) passbands in the rest frames of the objects are correlated with no time lag. The data show indications of (i) a mild negative correlation of UV variability with bolometric luminosity and (ii) weak positive correlation between UV variability and black hole mass. At FUV, about 50% of the sources show a strong correlation between spectral indices and flux variations with a hardening when brightening behaviour, while for the remaining sources the correlation is moderate. In NUV, the sources do show a harder when brighter trend, however, the correlation is either weak or moderate.
We discuss the origin of the optical variations in the Narrow line Seyfert 1 galaxy NGC 4051 and present the results of a cross-correlation study using X-ray and optical light curves spanning more than 12 years. The emission is highly variable in all wavebands, and the amplitude of the optical variations is found to be smaller than that of the X-rays, even after correcting for the contaminating host galaxy flux falling inside the photometric aperture. The optical power spectrum is best described by an unbroken power law model with slope $alpha=1.4^{+0.6}_{-0.2}$ and displays lower variability power than the 2-10 keV X-rays on all time-scales probed. We find the light curves to be significantly correlated at an optical delay of $1.2^{+1.0}_{-0.3}$ days behind the X-rays. This time-scale is consistent with the light travel time to the optical emitting region of the accretion disc, suggesting that the optical variations are driven by X-ray reprocessing. We show, however, that a model whereby the optical variations arise from reprocessing by a flat accretion disc cannot account for all the optical variability. There is also a second significant peak in the cross-correlation function, at an optical delay of $39^{+2.7}_{-8.4}$ days. The lag is consistent with the dust sublimation radius in this source, suggesting that there is a measurable amount of optical flux coming from the dust torus. We discuss the origin of the additional optical flux in terms of reprocessing of X-rays and reflection of optical light by the dust.
154 - I.E. Papadakis , M. Villata , 2007
We present the results from a study of the long-term optical spectral variations of BL Lacertae, using the long and well-sampled B and R-band light curves of the Whole Earth Blazar Telescope (WEBT) collaboration, binned on time intervals of 1 day. Th e relation between spectral slope and flux (the spectrum gets bluer as the source flux increases) is well described by a power-law model, although there is significant scatter around the best-fitting model line. To some extent, this is due to the spectral evolution of the source (along well-defined loop-like structures) during low-amplitude events, which are superimposed on the major optical flares, and evolve on time scales of a few days. The bluer-when-brighter mild chromatism of the long-term variations of the source can be explained if the flux increases/decreases faster in the B than in the R band. The B and R-band variations are well correlated, with no significant, measurable delays larger than a few days. On the other hand, we find that the spectral variations lead those in the flux light curves by ~ 4 days. Our results can be explained in terms of Doppler factor variations due to changes in the viewing angle of a curved and inhomogeneous emitting jet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا