ترغب بنشر مسار تعليمي؟ اضغط هنا

The muon g-2 and the bounds on the Higgs boson mass

154   0   0.0 ( 0 )
 نشر من قبل Massimo Passera
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

After a brief review of the muon g-2 status, we analyze the possibility that the present discrepancy between experiment and the Standard Model (SM) prediction may be due to hypothetical errors in the determination of the hadronic leading-order contribution to the latter. In particular, we show how an increase of the hadro-production cross section in low-energy e^+e^- collisions could bridge the muon g-2 discrepancy, leading however to a decrease on the electroweak upper bound on M_H, the SM Higgs boson mass. That bound is currently M_H < ~ 150GeV (95%CL) based on the preliminary top quark mass M_t = 172.6(1.4)GeV and the recent determination Delta alpha_{rm had}^{(5)}(M_Z) = 0.02768(22), while the direct-search lower bound is M_H > 114.4GeV (95%CL). By means of a detailed analysis we conclude that this solution of the muon g-2 discrepancy is unlikely in view of current experimental error estimates. However, if this turns out to be the solution, the 95%CL upper bound on M_H is reduced to about 130GeV which, in conjunction with the experimental lower bound, leaves a narrow window for the mass of this fundamental particle.



قيم البحث

اقرأ أيضاً

We study the Higgs boson mass and the muon anomalous magnetic moment (the muon $g-2$) in a supersymmetric standard model with vector-like generations. The infrared physics of the model is governed by strong renormalization-group effects of the gauge couplings. That leads to sizable extra Yukawa couplings of Higgs doublets between the second and vector-like generations in both quark and lepton sectors. It is found with this property that there exist wide parameter regions where the Higgs boson mass and the muon $g-2$ are simultaneously explained.
The minimal $U(1)_{rm B-L}$ extension of the Standard Model (B-L-SM) offers an explanation for neutrino mass generation via a seesaw mechanism as well as contains two new physics states such as an extra Higgs boson and a new $Z^prime$ gauge boson. Th e emergence of a second Higgs particle as well as a new $Z^prime$ gauge boson, both linked to the breaking of a local $U(1)_{rm B-L}$ symmetry, makes the B-L-SM rather constrained by direct searches at the Large Hadron Collider (LHC) experiments. We investigate the phenomenological status of the B-L-SM by confronting the new physics predictions with the LHC and electroweak precision data. Taking into account the current bounds from direct LHC searches, we demonstrate that the prediction for the muon $(g-2)_mu$ anomaly in the B-L-SM yields at most a contribution of approximately $8.9 times 10^{-12}$ which represents a tension of $3.28$ standard deviations, with the current $1sigma$ uncertainty, by means of a $Z^prime$ boson if its mass lies in a range of $6.3$ to $6.5$ TeV, within the reach of future LHC runs. This means that the B-L-SM, with heavy yet allowed $Z^prime$ boson mass range, in practice does not resolve the tension between the observed anomaly in the muon $(g-2)_mu$ and the theoretical prediction in the Standard Model. Such a heavy $Z^prime$ boson also implies that the minimal value for a new Higgs mass is of the order of 400 GeV.
We show that one of the simplest extensions of the Standard Model, the addition of a second Higgs doublet, when combined with a dark sector singlet scalar, allows us to: $i)$ explain the long-standing anomalies in the Liquid Scintillator Neutrino Det ector (LSND) and MiniBooNE (MB) while maintaining compatibility with the null result from KARMEN, $ii)$ obtain, in the process, a portal to the dark sector, and $iii)$ comfortably account for the observed value of the muon $g-2$. Three singlet neutrinos allow for an understanding of observed neutrino mass-squared differences via a Type I seesaw, with two of the lighter states participating in the interaction in both LSND and MB. We obtain very good fits to energy and angular distributions in both experiments. We explain features of the solution presented here and discuss the constraints that our model must satisfy. We also mention prospects for future tests of its particle content.
Data from the Muon g-2 experiment and measurements of the fine structure constant suggest that the anomalous magnetic moments of the muon and electron are at odds with standard model expectations. We survey the ability of axion-like-particles, two-Hi ggs-doublet models and leptoquarks to explain the discrepancies. We find that accounting for other constraints, all scenarios except the Type-I, Type-II and Type-Y two-Higgs-doublet models fit the data well.
In unified $mathcal{N}=1$ supergravity scenario the gaugino masses can be non-universal. The patterns of these non-universalities are dictated by the vacuum expectation values of non-singlet chiral super-fields in visible sector. Here, we have analys ed the model independent correlations among the gaugino masses with an aim to explain the $[1div 3]sigma$ excess of muon (g-2) ($Delta a_mu$). We have also encapsulated the interconnections among other low and high scale parameters, compatible with the collider constraints, Higgs mass, relic density and flavour data. We have noted that the existing non-universal models are not capable enough to explain $Delta a_mu$ at $[1div 2]sigma$ level. In the process, we have also shown the impact of recent limits from the searches for disappearing track and long lived charged particles at the LHC. These are the most stringent limits so far ruling out a large parameter space allowed by other constraints. We have also performed model guided analysis where gaugino masses are linear combination of contributions coming from singlet and non-singlet chiral super-fields. Here, a new mixing parameter has been introduced. Following the earlier methodology, we have been able to constrain this mixing parameter and pin down the promising models on this notion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا