ترغب بنشر مسار تعليمي؟ اضغط هنا

de Sitter vacua in no-scale supergravities and Calabi-Yau string models

189   0   0.0 ( 0 )
 نشر من قبل Claudio Scrucca
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a general analysis on the possibility of obtaining metastable vacua with spontaneously broken N=1 supersymmetry and non-negative cosmological constant in the moduli sector of string models. More specifically, we study the condition under which the scalar partners of the Goldstino are non-tachyonic, which depends only on the Kahler potential. This condition is not only necessary but also sufficient, in the sense that all of the other scalar fields can be given arbitrarily large positive square masses if the superpotential is suitably tuned. We consider both heterotic and orientifold string compactifications in the large-volume limit and show that the no-scale property shared by these models severely restricts the allowed values for the `sGoldstino masses in the superpotential parameter space. We find that a positive mass term may be achieved only for certain types of compactifications and specific Goldstino directions. Additionally, we show how subleading corrections to the Kahler potential which break the no-scale property may allow to lift these masses.



قيم البحث

اقرأ أيضاً

We develop a method for constructing metastable de Sitter vacua in N=1 supergravity models describing the no-scale volume moduli sector of Calabi-Yau string compactifications. We consider both heterotic and orientifold models. Our main guideline is t he necessary condition for the existence of metastable vacua coming from the Goldstino multiplet, which constrains the allowed scalar geometries and supersymmetry-breaking directions. In the simplest non-trivial case where the volume is controlled by two moduli, this condition simplifies and turns out to be fully characterised by the intersection numbers of the Calabi-Yau manifold. We analyse this case in detail and show that once the metastability condition is satisfied it is possible to reconstruct in a systematic way the local form of the superpotential that is needed to stabilise all the fields. We apply then this procedure to construct some examples of models where the superpotential takes a realistic form allowed by flux backgrounds and gaugino condensation effects, for which a viable vacuum arises without the need of invoking corrections to the Kahler potential breaking the no-scale property or uplifting terms. We finally discuss the prospects of constructing potentially realistic models along these lines.
No-scale supergravity is the appropriate general framework for low-energy effective field theories derived from string theory. The simplest no-scale Kahler potential with a single chiral field corresponds to a compactification to flat Minkowski space with a single volume modulus, but generalizations to single-field no-scale models with de Sitter vacua are also known. In this paper we generalize these de Sitter constructions to two- and multi-field models of the types occurring in string compactifications with more than one relevant modulus. We discuss the conditions for stability of the de Sitter solutions and holomorphy of the superpotential, and give examples whose superpotential contains only integer powers of the chiral fields.
We study string loop corrections to the gravity kinetic terms in type IIB compactifications on Calabi-Yau threefolds or their orbifold limits, in the presence of $D7$-branes and orientifold planes. We show that they exhibit in general a logarithmic b ehaviour in the large volume limit transverse to the $D7$-branes, induced by a localised four-dimensional Einstein-Hilbert action that appears at a lower order in the closed string sector, found in the past. Here, we compute the coefficient of the logarithmic corrections and use them to provide an explicit realisation of a mechanism for Kahler moduli stabilisation that we have proposed recently, which does not rely on non-perturbative effects and lead to de Sitter vacua. Our result avoids no-go theorems of perturbative stabilisation due to runaway potentials, in a way similar to the Coleman-Weinberg mechanism, and provides a counter example to one of the swampland conjectures concerning de Sitter vacua in quantum gravity, once string loop effects are taken into account; it thus paves the way for embedding the Standard Model of particle physics and cosmology in string theory.
We study the geometry of the scalar manifolds emerging in the no-scale sector of Kahler moduli and matter fields in generic Calabi-Yau string compactifications, and describe its implications on scalar masses. We consider both heterotic and orientifol d models and compare their characteristics. We start from a general formula for the Kahler potential as a function of the topological compactification data and study the structure of the curvature tensor. We then determine the conditions for the space to be symmetric and show that whenever this is the case the heterotic and the orientifold models give the same scalar manifold. We finally study the structure of scalar masses in this type of geometries, assuming that a generic superpotential triggers spontaneous supersymmetry breaking. We show in particular that their behavior crucially depends on the parameters controlling the departure of the geometry from the coset situation. We first investigate the average sGoldstino mass in the hidden sector and its sign, and study the implications on vacuum metastability and the mass of the lightest scalar. We next examine the soft scalar masses in the visible sector and their flavor structure, and study the possibility of realizing a mild form of sequestering relying on a global symmetry.
We propose a new mechanism for obtaining de Sitter vacua in type IIB string theory compactified on (orientifolded) Calabi-Yau manifolds similar to those recently studied by Kachru, Kallosh, Linde and Trivedi (KKLT). dS vacuum appears in KKLT model af ter uplifting an AdS vacuum by adding an anti-D3-brane, which explicitly breaks supersymmetry. We accomplish the same goal by adding fluxes of gauge fields within the D7-branes, which induce a D-term potential in the effective 4D action. In this way we obtain dS space as a spontaneously broken vacuum from a purely supersymmetric 4D action. We argue that our approach can be directly extended to heterotic string vacua, with the dilaton potential obtained from a combination of gaugino condensation and the D-terms generated by anomalous U(1) gauge groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا