ﻻ يوجد ملخص باللغة العربية
Documents in scientific newspapers are often marked by attitudes and opinions of the author and/or other persons, who contribute with objective and subjective statements and arguments as well. In this respect, the attitude is often accomplished by a linguistic modality. As in languages like english, french and german, the modality is expressed by special verbs like can, must, may, etc. and the subjunctive mood, an occurrence of modalities often induces that these verbs take over the role of modality. This is not correct as it is proven that modality is the instrument of the whole sentence where both the adverbs, modal particles, punctuation marks, and the intonation of a sentence contribute. Often, a combination of all these instruments are necessary to express a modality. In this work, we concern with the finding of modal verbs in scientific texts as a pre-step towards the discovery of the attitude of an author. Whereas the input will be an arbitrary text, the output consists of zones representing modalities.
Researchers and students face an explosion of newly published papers which may be relevant to their work. This led to a trend of sharing human summaries of scientific papers. We analyze the summaries shared in one of these platforms Shortscience.org.
Data-driven approaches to sequence-to-sequence modelling have been successfully applied to short text summarization of news articles. Such models are typically trained on input-summary pairs consisting of only a single or a few sentences, partially d
Univalent homotopy type theory (HoTT) may be seen as a language for the category of $infty$-groupoids. It is being developed as a new foundation for mathematics and as an internal language for (elementary) higher toposes. We develop the theory of fac
Doctrines are categorical structures very apt to study logics of different nature within a unified environment: the 2-category Dtn of doctrines. Modal interior operators are characterised as particular adjoints in the 2-category Dtn. We show that the
Alphas are stock prediction models capturing trading signals in a stock market. A set of effective alphas can generate weakly correlated high returns to diversify the risk. Existing alphas can be categorized into two classes: Formulaic alphas are sim