ترغب بنشر مسار تعليمي؟ اضغط هنا

Darwin Tames an Andromeda Dwarf: Unraveling the Orbit of NGC 205 Using a Genetic Algorithm

29   0   0.0 ( 0 )
 نشر من قبل Kirsten Howley
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NGC 205, a close satellite of the M31 galaxy, is our nearest example of a dwarf elliptical galaxy. Photometric and kinematic observations suggest that NGC 205 is undergoing tidal distortion from its interaction with M31. Despite earlier attempts, the orbit and progenitor properties of NGC 205 are not well known. We perform an optimized search for these unknowns by combining a genetic algorithm with restricted N-body simulations of the interaction. This approach, coupled with photometric and kinematic observations as constraints, allows for an effective exploration of the parameter space. We represent NGC 205 as a static Hernquist potential with embedded massless test particles that serve as tracers of surface brightness. We explore 3 distinct, initially stable configurations of test particles: cold rotating disk, warm rotating disk, and hot, pressure-supported spheroid. Each model reproduces some, but not all, of the observed features of NGC 205, leading us to speculate that a rotating progenitor with substantial pressure support could match all of the observables. Furthermore, plausible combinations of mass and scale length for the pressure-supported spheroid progenitor model reproduce the observed velocity dispersion profile. For all 3 models, orbits that best match the observables place the satellite 11+/-9 kpc behind M31 moving at very large velocities: 300-500 km/s on primarily radial orbits. Given that the observed radial component is only 54 km/s, this implies a large tangential motion for NGC 205, moving from the NW to the SE. These results suggest NGC 205 is not associated with the stellar arc observed to the NE of NGC 205. Furthermore, NGC 205s velocity appears to be near or greater than its escape velocity, signifying that the satellite is likely on its first M31 passage.

قيم البحث

اقرأ أيضاً

108 - Jeff Crowder , Neil J. Cornish , 2006
This work presents the first application of the method of Genetic Algorithms (GAs) to data analysis for the Laser Interferometer Space Antenna (LISA). In the low frequency regime of the LISA band there are expected to be tens of thousands galactic bi nary systems that will be emitting gravitational waves detectable by LISA. The challenge of parameter extraction of such a large number of sources in the LISA data stream requires a search method that can efficiently explore the large parameter spaces involved. As signals of many of these sources will overlap, a global search method is desired. GAs represent such a global search method for parameter extraction of multiple overlapping sources in the LISA data stream. We find that GAs are able to correctly extract source parameters for overlapping sources. Several optimizations of a basic GA are presented with results derived from applications of the GA searches to simulated LISA data.
We present Herschel dust continuum, James Clerk Maxwell Telescope CO(3-2) observations and a search for [CII] 158 micron and [OI] 63 micron spectral line emission for the brightest early-type dwarf satellite of Andromeda, NGC 205. While direct gas me asurements (Mgas ~ 1.5e+6 Msun, HI + CO(1-0)) have proven to be inconsistent with theoretical predictions of the current gas reservoir in NGC 205 (> 1e+7 Msun), we revise the missing interstellar medium mass problem based on new gas mass estimates (CO(3-2), [CII], [OI]) and indirect measurements of the interstellar medium content through dust continuum emission. Based on Herschel observations, covering a wide wavelength range from 70 to 500 micron, we are able to probe the entire dust content in NGC 205 (Mdust ~ 1.1-1.8e+4 Msun at Tdust ~ 18-22 K) and rule out the presence of a massive cold dust component (Mdust ~ 5e+5 Msun, Tdust ~ 12 K), which was suggested based on millimeter observations from the inner 18.4 arcsec. Assuming a reasonable gas-to-dust ratio of ~ 400, the dust mass in NGC 205 translates into a gas mass Mgas ~ 4-7e+6 Msun. The non-detection of [OI] and the low L_[CII]-to-L_CO(1-0) line intensity ratio (~ 1850) imply that the molecular gas phase is well traced by CO molecules in NGC 205. We estimate an atomic gas mass of 1.5e+4 Msun associated with the [CII] emitting PDR regions in NGC 205. From the partial CO(3-2) map of the northern region in NGC 205, we derive a molecular gas mass of M_H2 ~ 1.3e+5 Msun. [abridged]
Modeling of interacting galaxies suffers from an extended parameter space prohibiting traditional grid based search strategies. As an alternative approach a combination of a Genetic Algorithm (GA) with fast restricted N-body simulations can be applie d. A typical fit takes about 3-6 CPU-hours on a PentiumII processor. Here we present a parallel implementation of our GA which reduces the CPU-requirement of a parameter determination to a few minutes on 100 nodes of a CRAY T3E.
180 - Ivo Saviane ESO 2009
NGC 205 is a dwarf elliptical galaxy which shows many features that are more typical of disk galaxies, and our recent study of the central stellar population has added another peculiarity. In the central regions, star formation has been on-going cont inuously for a few hundred Myr, until ca. 20 Myr ago, perhaps fed by gas funneled to the center in the course of morphological transformation. In this contribution we use a deep, wide-field image obtained at a scale of 2/px to show that subtle structures can be detected in and near the body of the dwarf galaxy. The southern tidal tail can be mapped out to unprecedented distances from the center, and we suggest that the northern tail is partially hidden behind a very extended dust lane, or ring, belonging to M31. A spiral pattern emerges across the body of the galaxy, but it might be explained by another M31 dust filament.
Handwriting Recognition enables a person to scribble something on a piece of paper and then convert it into text. If we look into the practical reality there are enumerable styles in which a character may be written. These styles can be self combined to generate more styles. Even if a small child knows the basic styles a character can be written, he would be able to recognize characters written in styles intermediate between them or formed by their mixture. This motivates the use of Genetic Algorithms for the problem. In order to prove this, we made a pool of images of characters. We converted them to graphs. The graph of every character was intermixed to generate styles intermediate between the styles of parent character. Character recognition involved the matching of the graph generated from the unknown character image with the graphs generated by mixing. Using this method we received an accuracy of 98.44%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا