ﻻ يوجد ملخص باللغة العربية
We have developed a wide-field mosaic CCD camera, MOA-cam3, mounted at the prime focus of the Microlensing Observations in Astrophysics (MOA) 1.8-m telescope. The camera consists of ten E2V CCD4482 chips, each having 2kx4k pixels, and covers a 2.2 deg^2 field of view with a single exposure. The optical system is well optimized to realize uniform image quality over this wide field. The chips are constantly cooled by a cryocooler at -80C, at which temperature dark current noise is negligible for a typical 1-3 minute exposure. The CCD output charge is converted to a 16-bit digital signal by the GenIII system (Astronomical Research Cameras Inc.) and readout is within 25 seconds. Readout noise of 2--3 ADU (rms) is also negligible. We prepared a wide-band red filter for an effective microlensing survey and also Bessell V, I filters for standard astronomical studies. Microlensing studies have entered into a new era, which requires more statistics, and more rapid alerts to catch exotic light curves. Our new system is a powerful tool to realize both these requirements.
Large mosaic multiCCD camera is the key instrument for modern digital sky survey. DECam is an extremely red sensitive 520 Megapixel camera designed for the incoming Dark Energy Survey (DES). It is consist of sixty two 4k$times$2k and twelve 2k x 2k 2
Global second-generation microlensing surveys aim to discover and characterize extrasolar planets and their frequency, by means of round-the-clock high-cadence monitoring of a large area of the Galactic bulge, in a controlled experiment. We report th
A new 1.8-m wide-field alt-az survey telescope was installed at Mt John University Observatory in New Zealand in October 2004. The telescope will be dedicated to the MOA (Microlensing Observations in Astrophysics) project. The instrument is equipped
Imaging observations of faint meteors were carried out on April 11 and 14, 2016 with a wide-field CMOS mosaic camera, Tomo-e PM, mounted on the 105-cm Schmidt telescope at Kiso Observatory, the University of Tokyo. Tomo-e PM, which is a prototype mod
Because of the development of large-format, wide-field cameras, microlensing surveys are now able to monitor millions of stars with sufficient cadence to detect planets. These new discoveries will span the full range of significance levels including