ﻻ يوجد ملخص باللغة العربية
In this paper we investigate problems on almost everywhere convergence of subsequences of Riemann sums md0 R_nf(x)=frac{1}{n}sum_{k=0}^{n-1}fbigg(x+frac{k}{n}bigg),quad xin ZT. emd We establish a relevant connection between Riemann and ordinary maximal functions, which allows to use techniques and results of the theory of differentiations of integrals in $ZR^n$ in mentioned problems. In particular, we prove that for a definite sequence of infinite dimension $n_k$ Riemann sums $R_{n_k}f(x)$ converge almost everywhere for any $fin L^p$ with $p>1$.
In this paper, motivated by physical considerations, we introduce the notion of modified Riemann sums of Riemann-Stieltjes integrable functions, show that they converge, and compute them explicitely under various assumptions.
We consider two integrals over $xin [0,1]$ involving products of the function $zeta_1(a,x)equiv zeta(a,x)-x^{-a}$, where $zeta(a,x)$ is the Hurwitz zeta function, given by $$int_0^1zeta_1(a,x)zeta_1(b,x),dxquadmbox{and}quad int_0^1zeta_1(a,x)zeta_1(b
In the present investigation our main aim is to give lower bounds for the ratio of some normalized $q$-Bessel functions and their sequences of partial sums. Especially, we consider Jacksons second and third $q$-Bessel functions and we apply one normalization for each of them.
We prove new $ell ^{p} (mathbb Z ^{d})$ bounds for discrete spherical averages in dimensions $ d geq 5$. We focus on the case of lacunary radii, first for general lacunary radii, and then for certain kinds of highly composite choices of radii. In par
In this paper, sums represented in (3) are studied. The expressions are derived in terms of Bessel functions of the first and second kinds and their integrals. Further, we point out the integrals can be written as a Meijer G function.