ترغب بنشر مسار تعليمي؟ اضغط هنا

The extreme, red afterglow of GRB 060923A: Distance or dust?

152   0   0.0 ( 0 )
 نشر من قبل Nial R. Tanvir
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gamma-ray bursts are powerful probes of the early universe, but locating and identifying very distant GRBs remains challenging. We report here the discovery of the K-band afterglow of Swift GRB 060923A, imaged within the first hour post-burst, and the faintest so far found. It was not detected in any bluer bands to deep limits, making it a candidate very high redshift burst (z>11). However, our later-time optical imaging and spectroscopy reveal a faint galaxy coincident with the GRB position which, if it is the host, implies a more moderate redshift (most likely z<2.8) and therefore that dust is the likely cause of the very red afterglow colour. This being the case, it is one of the few instances so far found of a GRB afterglow with high dust extinction.



قيم البحث

اقرأ أيضاً

We present a photometric study of the optical counterpart of the long-duration Gamma Ray Burst (GRB) 030725, which triggered the HETE FREGATE and WXM instruments on July 25th, 2003, and lasted more than 160s. An optical counterpart was identified at the Bronberg Observatory in South Africa about 7 hours after the burst occurred. The optical afterglow (OA) was observed between 4 and 15 days after the burst with the 1.54m Danish telescope at La Silla in the V, Rc, and Ic bands. We fit a broken power law to the data and determine a break time in the light curve between 16 hours and 4.7 days after the first detection of the burst. The decay slope is alpha1 = -0.59 +0.59/-0.44 before and alpha2 = -1.43 +/- 0.06 after the break. A bump may be present in the light curve, only significant at the 2-sigma level, 13.9 days after the main burst. The spectral slope of the OA, measured 12 days after the burst, is -2.9 +/- 0.6 , i.e. it falls in the extreme red end of the distribution of previous OA spectral slopes. Observations of the field 8 months after the burst with the EMMI instrument on the NTT telescope (La Silla) resulted in an upper limit of Rc=24.7 mag for the host galaxy of GRB 030725. The OA of GRB 030725 was discovered at a private, non-professional observatory and we point out that with the current suite of gamma ray satellites, an effort to organize future contributions of amateur observers may provide substantial help in GRB light curve follow up efforts.
We report near-infrared and optical follow-up observations of the afterglow of the Gamma-Ray Burst 000418 starting 2.5 days after the occurrence of the burst and extending over nearly seven weeks. GRB 000418 represents the second case for which the a fterglow was initially identified by observations in the near-infrared. During the first 10 days its R-band afterglow was well characterized by a single power-law decay with a slope of 0.86. However, at later times the temporal evolution of the afterglow flattens with respect to a simple power-law decay. Attributing this to an underlying host galaxy we find its magnitude to be R=23.9 and an intrinsic afterglow decay slope of 1.22. The afterglow was very red with R-K=4 mag. The observations can be explained by an adiabatic, spherical fireball solution and a heavy reddening due to dust extinction in the host galaxy. This supports the picture that (long) bursts are associated with events in star-forming regions.
117 - R.L.C. Starling 2005
We present early WHT ISIS optical spectroscopy of the afterglow of gamma-ray burst GRB 050730. The spectrum shows a DLA system with the highest measured hydrogen column to date: N(HI) = 22.1 +/- 0.1 at the third-highest GRB redshift z = 3.968. Our an alysis of the Swift XRT X-ray observations of the early afterglow show X-ray flares accompanied by decreasing X-ray absorption. From both the optical and the X-ray spectra we constrain the dust and gas properties of the host galaxy. We find the host to be a low metallicity galaxy, with low dust content. Much of the X-ray absorbing gas is situated close to the GRB, whilst the HI absorption causing the DLA is most likely located further out.
218 - B. Gendre 2009
We present the observations of the afterglow of gamma-ray burst GRB 090102. Optical data taken by the TAROT, REM, GROND, together with publicly available data from Palomar, IAC and NOT telescopes, and X-ray data taken by the XRT instrument on board t he Swift spacecraft were used. This event features an unusual light curve. In X-rays, it presents a constant decrease with no hint of temporal break from 0.005 to 6 days after the burst. In the optical, the light curve presents a flattening after 1 ks. Before this break, the optical light curve is steeper than that of the X-ray. In the optical, no further break is observed up to 10 days after the burst. We failed to explain these observations in light of the standard fireball model. Several other models, including the cannonball model were investigated. The explanation of the broad band data by any model requires some fine tuning when taking into account both optical and X-ray bands.
We here report on the photometric, spectroscopic and polarimetric monitoring of the optical afterglow of the Gamma-Ray Burst (GRB) 030328 detected by HETE-2. We found that a smoothly broken power-law decay provides the best fit of the optical light c urves, with indices alpha_1 = 0.76 +/- 0.03, alpha_2 = 1.50 +/- 0.07, and a break at t_b = 0.48 +/- 0.03 d after the GRB. Polarization is detected in the optical V-band, with P = (2.4 +/- 0.6)% and theta = (170 +/- 7) deg. Optical spectroscopy shows the presence of two absorption systems at z = 1.5216 +/- 0.0006 and at z = 1.295 +/- 0.001, the former likely associated with the GRB host galaxy. The X-ray-to-optical spectral flux distribution obtained 0.78 days after the GRB was best fitted using a broken power-law, with spectral slopes beta_opt = 0.47 +/- 0.15 and beta_X = 1.0 +/- 0.2. The discussion of these results in the context of the fireball model shows that the preferred scenario is a fixed opening angle collimated expansion in a homogeneous medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا