ﻻ يوجد ملخص باللغة العربية
We study the typical (median) value of the minimum gap in the quantum version of the Exact Cover problem using Quantum Monte Carlo simulations, in order to understand the complexity of the quantum adiabatic algorithm (QAA) for much larger sizes than before. For a range of sizes, N <= 128, where the classical Davis-Putnam algorithm shows exponential median complexity, the QAA shows polynomial median complexity. The bottleneck of the algorithm is an isolated avoided crossing point of a Landau-Zener type (collision between the two lowest energy levels only).
For the 2D Ising model, we analyzed dependences of thermodynamic characteristics on number of spins by means of computer simulations. We compared experimental data obtained using the Fisher-Kasteleyn algorithm on a square lattice with $N=l{times}l$ s
We study the quantum version of the random $K$-Satisfiability problem in the presence of the external magnetic field $Gamma$ applied in the transverse direction. We derive the replica-symmetric free energy functional within static approximation and t
Maximum entropy models provide the least constrained probability distributions that reproduce statistical properties of experimental datasets. In this work we characterize the learning dynamics that maximizes the log-likelihood in the case of large b
A quantum-thermal annealing method using a cluster-flip algorithm is studied in the two-dimensional spin-glass model. The temperature (T) and the transverse field (Gamma) are decreased simultaneously with the same rate along a linear path on the T-Ga
A complete understanding of real networks requires us to understand the consequences of the uneven interaction strengths between a systems components. Here we use the minimum spanning tree (MST) to explore the effect of weight assignment and network