ﻻ يوجد ملخص باللغة العربية
We present evidence for the existence of an IRAC excess in the spectral energy distribution (SED) of 5 galaxies at 0.6<z<0.9 and 1 galaxy at z=1.7. These 6 galaxies, located in the Great Observatories Origins Deep Survey field (GOODS-N), are star forming since they present strong 6.2, 7.7, and 11.3 um polycyclic aromatic hydrocarbon (PAH) lines in their Spitzer IRS mid-infrared spectra. We use a library of templates computed with PEGASE.2 to fit their multiwavelength photometry and derive their stellar continuum. Subtraction of the stellar continuum enables us to detect in 5 galaxies a significant excess in the IRAC band pass where the 3.3 um PAH is expected. We then assess if the physical origin of the IRAC excess is due to an obscured active galactic nucleus (AGN) or warm dust emission. For one galaxy evidence of an obscured AGN is found, while the remaining four do not exhibit any significant AGN activity. Possible contamination by warm dust continuum of unknown origin as found in the Galactic diffuse emission is discussed. The properties of such a continuum would have to be different from the local Universe to explain the measured IRAC excess, but we cannot definitively rule out this possibility until its origin is understood. Assuming that the IRAC excess is dominated by the 3.3 um PAH feature, we find good agreement with the observed 11.3 um PAH line flux arising from the same C-H bending and stretching modes, consistent with model expectations. Finally, the IRAC excess appears to be correlated with the star-formation rate in the galaxies. Hence it could provide a powerful diagnostic for measuring dusty star formation in z>3 galaxies once the mid-infrared spectroscopic capabilities of the James Webb Space Telescope become available.
Astronomical mid-IR spectra show two minor PAH features at 5.25 and 5.7 $mu$m (1905 and 1754 cm$^{rm - 1}$) that hitherto have been little studied, but contain information about the astronomical PAH population that complements that of the major emiss
We have examined polycyclic aromatic hydrocarbon (PAH) excitation in a sample of 25 nearby face-on spiral galaxies using the ratio of mid-infrared PAH emission to dust mass. Within 11 of the galaxies, we found that the PAH excitation was straightforw
Polycyclic Aromatic Hydrocarbons (PAHs) are carbon-based molecules resulting from the union of aromatic rings and related species, which are likely responsible for strong infrared emission features (3.3, 6.2, 7.7, 8.6, 11.3 and 12.7 microns). In this
We report new properties of the 11 and 12.7 {mu}m emission complexes of polycyclic aromatic hydrocarbons (PAHs) by applying a Gaussian-based decomposition technique. Using high-resolution textit{Spitzer} Space Telescope data, we study in detail the s
Using the AKARI, Wide-field Infrared Survey Explorer (WISE), Infrared Astronomical Satellite (IRAS), Sloan Digital Sky Survey (SDSS) and Hubble Space Telescope (HST) data, we investigated the relation of polycyclic aromatic hydrocarbon (PAH) mass ($M